import pandas as pd # Define the data data = { "Original Name" : [], "Proper Display Name": [], "Link" : [], } # Add model information to the data['Original Name'].append('salmonn_7b') data['Proper Display Name'].append('SALMONN-7B') data['Link'].append('https://arxiv.org/html/2310.13289v2') data['Original Name'].append('wavllm_fairseq') data['Proper Display Name'].append('WavLLM') data['Link'].append('https://arxiv.org/abs/2404.00656') data['Original Name'].append('Qwen2-Audio-7B-Instruct') data['Proper Display Name'].append('Qwen2-Audio-7B-Instruct') data['Link'].append('https://arxiv.org/abs/2407.10759') data['Original Name'].append('whisper_large_v3_with_llama_3_8b_instruct') data['Proper Display Name'].append('Whisper-Large-v3+Llama-3-8B-Instruct') data['Link'].append('https://arxiv.org/abs/2406.16020') data['Original Name'].append('mowe_audio') data['Proper Display Name'].append('MOWE-Audio') data['Link'].append('https://arxiv.org/abs/2409.06635') data['Original Name'].append('qwen_audio_chat') data['Proper Display Name'].append('Qwen-Audio-Chat') data['Link'].append('https://arxiv.org/abs/2311.07919') data['Original Name'].append('meralion_audiollm_v1_lora') data['Proper Display Name'].append('MERaLion-AudioLLM-v1-LoRA') data['Link'].append('https://www.a-star.edu.sg/i2r/research/I2RTechs/research/i2r-techs-solutions/unlocking-the-potential-of-large-language-models-(llms)-with-i-r-s-merlion-ai') data['Original Name'].append('meralion_audiollm_v1_mse') data['Proper Display Name'].append('MERaLion-AudioLLM-v1-MSE') data['Link'].append('https://www.a-star.edu.sg/i2r/research/I2RTechs/research/i2r-techs-solutions/unlocking-the-potential-of-large-language-models-(llms)-with-i-r-s-merlion-ai') data['Original Name'].append('stage2_whisper3_fft_mlp100_gemma2_9b_lora') data['Proper Display Name'].append('Stage2-Whisper3-FFT-MLP100-Gemma2-9B-LoRA') data['Link'].append('https://www.a-star.edu.sg/i2r/research/I2RTechs/research/i2r-techs-solutions/unlocking-the-potential-of-large-language-models-(llms)-with-i-r-s-merlion-ai') def get_dataframe(): """ Returns a DataFrame with the data and drops rows with missing values. """ df = pd.DataFrame(data) return df.dropna(axis=0)