import streamlit as st import datasets import numpy as np def show_examples(category_name, dataset_name, model_lists): st.divider() sample_folder = f"./examples/{category_name}/{dataset_name}" dataset = datasets.load_from_disk(sample_folder) for index in range(len(dataset)): with st.container(): st.markdown(f'##### EXAMPLE {index+1}') col1, col2 = st.columns([0.3, 0.7], vertical_alignment="center") with col1: st.audio(f'{sample_folder}/sample_{index}.wav', format="audio/wav") with col2: with st.container(): custom_css = """ """ st.markdown(custom_css, unsafe_allow_html=True) if dataset_name in ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']: choices = dataset[index]['other_attributes']['choices'] if isinstance(choices, str): choices_text = choices elif isinstance(choices, list): choices_text = ' '.join(i for i in choices) question_text = f"""

QUESTION: {dataset[index]['instruction']['text']}

CHOICES: {choices_text}

""" else: question_text = f"""

QUESTION: {dataset[index]['instruction']['text']}

""" st.markdown(question_text, unsafe_allow_html=True) with st.container(): custom_css = """ """ st.markdown(custom_css, unsafe_allow_html=True) st.markdown(f"""

CORRECT ANSWER: {dataset[index]['answer']['text']}

""", unsafe_allow_html=True) # st.divider() with st.container(): custom_css = """ """ st.markdown(custom_css, unsafe_allow_html=True) model_lists.sort() s = '' if dataset_name in ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']: for model in model_lists: try: s += f""" {model}

{dataset[index][model]['text']}

{choices_text}

{dataset[index][model]['model_prediction']} """ except: print(f"{model} is not in {dataset_name}") continue else: for model in model_lists: try: s += f""" {model} {dataset[index][model]['text']} {dataset[index][model]['model_prediction']} """ except: print(f"{model} is not in {dataset_name}") continue body_details = f""" {s}
MODEL QUESTION MODEL PREDICTION
""" st.markdown(f"""
{body_details}
""", unsafe_allow_html=True) st.text("") st.divider()