Spaces:
Running
Running
File size: 14,262 Bytes
c92ea65 17424a1 c92ea65 abfac44 f2550a3 d8c5e10 7936d9a 9d073ea d8c5e10 abfac44 17424a1 ad62f45 17424a1 abfac44 693bdb2 abfac44 17424a1 693bdb2 17424a1 693bdb2 17424a1 4571f97 17424a1 4571f97 47d1b23 4571f97 47d1b23 4571f97 47d1b23 4571f97 788acd9 e361b55 cb8dd23 e361b55 cb8dd23 84197ad 51f16bd 84197ad cb8dd23 84197ad cb8dd23 84197ad cb8dd23 84197ad cb8dd23 84197ad cb8dd23 17424a1 693bdb2 17424a1 ad62f45 788acd9 17424a1 f2550a3 17424a1 788acd9 f2550a3 788acd9 f2550a3 788acd9 f2550a3 788acd9 17424a1 f2550a3 788acd9 17424a1 ad62f45 17424a1 12e2867 17424a1 693bdb2 f5327ec 12e2867 17424a1 7936d9a 33bbb87 17424a1 7936d9a 17424a1 12e2867 17424a1 f5327ec 17424a1 ad62f45 17424a1 ae2cddd 17424a1 9d073ea 17424a1 788acd9 17424a1 ae2cddd ad62f45 17424a1 7936d9a 17424a1 e01ab7c 17424a1 788acd9 ae2cddd 17424a1 4571f97 17424a1 ae2cddd 17424a1 ae2cddd 17424a1 ae2cddd 17424a1 788acd9 17424a1 ae2cddd 17424a1 788acd9 17424a1 9d073ea 788acd9 17424a1 788acd9 17424a1 788acd9 17424a1 9d073ea 788acd9 17424a1 9d073ea ae2cddd 17424a1 9d073ea ae2cddd 9d073ea 17424a1 9d073ea ae2cddd 9d073ea ae2cddd 9d073ea 17424a1 9d073ea 24894ef 9d073ea 17424a1 9d073ea 17424a1 9d073ea 17424a1 24894ef 788acd9 17424a1 9d073ea ae2cddd 9d073ea 17424a1 ae2cddd 9d073ea e759c43 d8711d5 55a7aac e759c43 9d073ea cb8dd23 9d073ea 17424a1 9d073ea 12e2867 24894ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
"""
Gradio + OpenAI Responses API + Remote MCP Server (HTTP)
CSV-based MLOps Agent with streaming final answer & MCP tools
"""
import json
import os
import shutil
import gradio as gr
from openai import OpenAI
# -------------------------
# Config
# -------------------------
MCP_SERVER_URL = "https://mcp-1st-birthday-auto-deployer.hf.space/gradio_api/mcp/"
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
MODEL = "gpt-5-mini" # you can swap to gpt-5 for final answers if you want
client = OpenAI(api_key=OPENAI_API_KEY)
MCP_TOOLS = [
{
"type": "mcp",
"server_label": "auto-deployer",
"server_url": MCP_SERVER_URL,
"require_approval": "never",
}
]
# -------------------------
# Long prompts
# -------------------------
GENERAL_SYSTEM_PROMPT = """
You are a helpful, concise MLOps assistant living inside a web app.
Context:
- The app can analyze CSV datasets, train models, and deploy them on cloud.
- In this mode, you are doing *general chat only* (no tools are being run).
You will receive:
- A short transcript of the previous conversation (if any).
- The user's latest message.
Your job:
- Answer the latest user message directly.
- Use the previous conversation only when it is clearly relevant.
- If the user is asking conceptual questions (MLOps, ML, data, deployment), explain clearly.
- If they refer to the app’s capabilities, you may describe what the app can do
(e.g. “upload a CSV, then ask me to analyze/train/deploy”), but do not fabricate
specific model IDs or endpoints.
- If something is ambiguous, make a reasonable assumption and move forward.
Style:
- Be clear, friendly, and pragmatic.
- Use Markdown (headings, bullet points, code blocks when helpful).
- Prefer short, high-signal answers over long explanations, unless the user asks for more detail.
"""
MAIN_SYSTEM_PROMPT = """
You are an MLOps assistant. You can internally use tools for CSV analysis,
model training, evaluation, deployment, and end-to-end MLOps.
Your reply must be:
- Clean and user-facing
- Structured with headings, sub-headings, and bullet points
- High-signal and concise
Always reply in this Markdown structure, omitting sections that are not relevant:
### Data Analysis (only if a dataset was analyzed)
- Please provide a detailed data analysis report in bullet style, highlighting key insights.
### Model Performance (only if a model was trained)
- 1–3 bullets with key metrics (e.g. Accuracy, F1, ROC-AUC).
- Display the Model id
### Deployment Status (only if deployment was requested/attempted)
- 1–3 bullets summarizing whether deployment is available for inference or failed.
- Use clear, non-technical language (no stack traces).
- Display the Model id and endpoint URL
### Example Usage (only if a model is deployed)
Provide example code **outside** of any collapsible block:
- One Python example in a fenced `python` code block.
- One curl example in a fenced `bash` code block.
These should show how to call the model or endpoint with a realistic payload, e.g.:
```python
# Example – replace values with your own inputs
````
```bash
# Curl example for API endpoint
``
---
After the Key Summary (including Example Usage), ALWAYS add a collapsible block
for technical details:
<details>
<summary><strong>Show Technical Details (tools, parameters, logs)</strong></summary>
#### Tools Used
* List tool names used this turn.
* One short line on what each did.
#### Parameters Passed
* Bullet list of important parameters (e.g. target column, task type, key options).
#### Additional Logs / Raw Output (optional)
* Short JSON snippets or log fragments if useful.
* Wrap any JSON or logs in fenced code blocks.
</details>
"""
# -------------------------
# Helpers
# -------------------------
def history_to_text(history) -> str:
"""
Turn Gradio history (list of {role, content}) into a plain-text
conversation transcript for the model.
"""
if not history:
return ""
lines = []
for msg in history:
role = msg.get("role")
content = msg.get("content", "")
if role == "user":
lines.append(f"User: {content}")
elif role == "assistant":
lines.append(f"Assistant: {content}")
return "\n".join(lines)
def extract_output_text(response) -> str:
"""
Extract text from a non-streaming Responses API call while preserving formatting.
"""
try:
if hasattr(response, "output") and response.output and len(response.output) > 0:
first = response.output[0]
if getattr(first, "content", None):
for content_item in first.content:
if (
hasattr(content_item, "type")
and content_item.type == "output_text"
):
text = getattr(content_item, "text", None)
if text:
return text
elif (
hasattr(content_item, "type")
and content_item.type == "output_json"
):
# If there's JSON output, format it nicely
json_data = getattr(content_item, "json", None)
if json_data:
return f"```json\n{json.dumps(json_data, indent=2)}\n```"
# Fallback
return getattr(response, "output_text", None) or str(response)
except Exception as e:
return f"Error extracting output: {e}"
def handle_upload(file_path, request: gr.Request):
"""
1) Take uploaded file path (string)
2) Check file size and show warnings for large datasets
3) Copy to /tmp for a stable path
4) Build a public Gradio file URL that the MCP server can fetch via HTTP
"""
if not file_path:
return None
# Check file size and add warning if > 1.5MB
url_params = ""
try:
file_size = os.path.getsize(file_path)
file_size_mb = file_size / (1024 * 1024) # Convert to MB
if file_size_mb > 1.5:
# Show Gradio warning with 5-second auto-dismiss
gr.Warning(
f"Large dataset detected! Your file is {file_size_mb:.1f}MB.",
duration=5,
)
gr.Warning(
"For optimal performance, training will use only the first 10,000 rows.",
duration=10,
)
except Exception:
# If we can't check file size, continue without warnings
pass
local_path = file_path
stable_path = os.path.join("/tmp", os.path.basename(local_path))
try:
shutil.copy(local_path, stable_path)
local_path = stable_path
except Exception:
# If copy fails, just use the original path
pass
base_url = str(request.base_url).rstrip("/")
public_url = f"{base_url}/gradio_api/file={local_path}{url_params}"
return public_url
def should_use_tools(user_msg: str) -> bool:
"""
Simple heuristic to decide if this turn should trigger MCP tools.
Only fire tools if the user is clearly asking for data / model work.
"""
text = user_msg.lower()
keywords = [
"data",
"dataset",
"csv",
"train",
"training",
"model",
"deploy",
"deployment",
"predict",
"prediction",
"inference",
"evaluate",
"evaluation",
"analyze",
"analysis",
]
return any(k in text for k in keywords)
# -------------------------
# Main chat handler (streaming + disabling textbox)
# -------------------------
def chat_send_stream(user_msg, history, file_url):
"""
Main Gradio streaming handler.
- If the user is just chatting (e.g., "hey"), respond directly
with a streaming answer (no tools, no CSV required).
- If the user clearly asks for data/model operations:
Call API once with MCP tools and stream the natural language results directly
- Keeps full chat history so follow-ups work.
- Shows status/progress messages in the UI when tools are used.
- Disables the textbox during work, re-enables at the end.
"""
# UI history (what Gradio displays)
if history is None:
history = []
# Append the user message to the UI history
history.append({"role": "user", "content": user_msg})
# Conversation before this turn (for context)
convo_before = history_to_text(history[:-1])
# Decide if this message should trigger tools
use_tools = should_use_tools(user_msg)
# -------------------------
# BRANCH 1: No tools (normal chat, e.g. "hey")
# -------------------------
if not use_tools:
# Add a small status bubble then stream
history.append({"role": "assistant", "content": "Generating answer..."})
# Disable textbox while generating
yield (
history,
gr.update(interactive=False),
)
# Build input text for Responses API
input_text = (
(f"Conversation so far:\n{convo_before}\n\n" if convo_before else "")
+ "Latest user message:\n"
+ user_msg
)
stream = client.responses.create(
model=MODEL,
instructions=GENERAL_SYSTEM_PROMPT,
input=input_text,
reasoning={"effort": "low"},
stream=True,
)
final_text = ""
for event in stream:
if event.type == "response.output_text.delta":
final_text += event.delta
history[-1]["content"] = final_text
yield (
history,
gr.update(interactive=False),
)
elif event.type == "response.completed":
break
# Re-enable textbox at the end
yield (
history,
gr.update(interactive=True, value=""),
)
return
# -------------------------
# BRANCH 2: Tools needed (data / model operations)
# -------------------------
# If tools are needed but no file URL, ask for CSV
if not file_url:
history.append(
{
"role": "assistant",
"content": (
"To analyze, train, or deploy, please upload a CSV file first "
"using the file upload control."
),
}
)
# Keep textbox enabled because nothing heavy is happening
yield (
history,
gr.update(interactive=True),
)
return
# User message for the model includes the CSV URL
user_with_file = f"[Uploaded CSV file URL: {file_url}]\n\n{user_msg}"
# Show a status message in UI
history.append(
{
"role": "assistant",
"content": "Analyzing your request and running MCP tools...",
}
)
# Disable textbox while tools run
yield (
history,
gr.update(interactive=False),
)
# Build input for the tool phase (single call)
tool_input = (
(f"Conversation so far:\n{convo_before}\n\n" if convo_before else "")
+ "Latest user request (with file URL):\n"
+ user_with_file
)
# Single API call with tools - MCP returns natural language results
stream = client.responses.create(
model=MODEL,
instructions=MAIN_SYSTEM_PROMPT,
input=tool_input,
tools=MCP_TOOLS,
reasoning={"effort": "low"},
stream=True,
)
# Replace status message with streaming answer
history[-1] = {"role": "assistant", "content": ""}
final_text = ""
for event in stream:
if event.type == "response.output_text.delta":
final_text += event.delta
history[-1]["content"] = final_text
yield (
history,
gr.update(interactive=False),
)
elif event.type == "response.completed":
break
# Re-enable textbox at the end, and clear it
yield (
history,
gr.update(interactive=True, value=""),
)
# -------------------------
# Gradio UI
# -------------------------
with gr.Blocks(title="Streaming MLOps Agent") as demo:
gr.Markdown(
"""
# 🧠 Smart MLOps Agent
- 💬 Chat naturally, even just “hey”
- 📂 Upload CSVs for analysis, training, and deployment
- ⚡ See live tool status and streaming answers
"""
)
file_url_state = gr.State(value=None)
uploader = gr.File(
label="Upload CSV File",
file_count="single",
type="filepath",
file_types=[".csv"],
)
uploader.change(
handle_upload,
inputs=[uploader],
outputs=[file_url_state],
)
chatbot = gr.Chatbot(
label="Chat",
render_markdown=True,
height=500,
avatar_images=(
None,
"https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.png",
),
)
msg = gr.Textbox(
label="Message",
interactive=True,
placeholder="Say hi, or ask me to analyze / train / deploy on your dataset...",
)
# Only Enter/Return sends messages; no Send button
msg.submit(
chat_send_stream,
inputs=[msg, chatbot, file_url_state],
outputs=[chatbot, msg],
)
gr.Examples(
examples=[
["Analyze the dataset", os.path.join("data", "heart.csv")],
["Train the classifier with HeartDisease as target", os.path.join("data", "heart.csv")],
["Deploy the model using model_1764524701 model id", os.path.join("data", "heart.csv")],
["Auto deploy the model using MEDV as target", os.path.join("data", "housing.csv")],
],
inputs=[msg, uploader],
label="Try an example",
)
if __name__ == "__main__":
demo.queue().launch(
theme=gr.themes.Soft(primary_hue="green", secondary_hue="blue"),
allowed_paths=["/tmp"],
ssr_mode=False,
show_error=True,
max_file_size="10mb",
)
|