DETERMINATOR / examples /README.md
Joseph Pollack
adds interface fixes, sidebar settings , oauth fixes , more graphs , the determinator , and more
12b7aab unverified

A newer version of the Gradio SDK is available: 6.0.2

Upgrade

The DETERMINATOR Examples

NO MOCKS. NO FAKE DATA. REAL SCIENCE.

These demos run the REAL deep research pipeline with actual API calls.


Prerequisites

You MUST have API keys configured:

# Copy the example and add your keys
cp .env.example .env

# Required (pick one):
OPENAI_API_KEY=sk-...
ANTHROPIC_API_KEY=sk-ant-...

# Optional (higher PubMed rate limits):
NCBI_API_KEY=your-key

Examples

1. Search Demo (No LLM Required)

Demonstrates REAL parallel search across PubMed, ClinicalTrials.gov, and Europe PMC.

uv run python examples/search_demo/run_search.py "metformin cancer"

What's REAL:

  • Actual NCBI E-utilities API calls (PubMed)
  • Actual ClinicalTrials.gov API calls
  • Actual Europe PMC API calls (includes preprints)
  • Real papers, real trials, real preprints

2. Embeddings Demo (No LLM Required)

Demonstrates REAL semantic search and deduplication.

uv run python examples/embeddings_demo/run_embeddings.py

What's REAL:

  • Actual sentence-transformers model (all-MiniLM-L6-v2)
  • Actual ChromaDB vector storage
  • Real cosine similarity computations
  • Real semantic deduplication

3. Orchestrator Demo (LLM Required)

Demonstrates the REAL search-judge-synthesize loop.

uv run python examples/orchestrator_demo/run_agent.py "metformin cancer"
uv run python examples/orchestrator_demo/run_agent.py "aspirin alzheimer" --iterations 5

What's REAL:

  • Real PubMed + ClinicalTrials + Europe PMC searches
  • Real LLM judge evaluating evidence quality
  • Real iterative refinement based on LLM decisions
  • Real research synthesis

4. Magentic Demo (OpenAI Required)

Demonstrates REAL multi-agent coordination using Microsoft Agent Framework.

# Requires OPENAI_API_KEY specifically
uv run python examples/orchestrator_demo/run_magentic.py "metformin cancer"

What's REAL:

  • Real MagenticBuilder orchestration
  • Real SearchAgent, JudgeAgent, HypothesisAgent, ReportAgent
  • Real manager-based coordination

5. Hypothesis Demo (LLM Required)

Demonstrates REAL mechanistic hypothesis generation.

uv run python examples/hypothesis_demo/run_hypothesis.py "metformin Alzheimer's"
uv run python examples/hypothesis_demo/run_hypothesis.py "sildenafil heart failure"

What's REAL:

  • Real PubMed + Web search first
  • Real embedding-based deduplication
  • Real LLM generating Drug -> Target -> Pathway -> Effect chains
  • Real knowledge gap identification

6. Full-Stack Demo (LLM Required)

THE COMPLETE PIPELINE - All phases working together.

uv run python examples/full_stack_demo/run_full.py "metformin Alzheimer's"
uv run python examples/full_stack_demo/run_full.py "sildenafil heart failure" -i 3

What's REAL:

  1. Real PubMed + ClinicalTrials + Europe PMC evidence collection
  2. Real embedding-based semantic deduplication
  3. Real LLM mechanistic hypothesis generation
  4. Real LLM evidence quality assessment
  5. Real LLM structured scientific report generation

Output: Publication-quality research report with validated citations.


API Key Requirements

Example LLM Required Keys
search_demo No Optional: NCBI_API_KEY
embeddings_demo No None
orchestrator_demo Yes OPENAI_API_KEY or ANTHROPIC_API_KEY
run_magentic Yes OPENAI_API_KEY (Magentic requires OpenAI)
hypothesis_demo Yes OPENAI_API_KEY or ANTHROPIC_API_KEY
full_stack_demo Yes OPENAI_API_KEY or ANTHROPIC_API_KEY

Architecture

User Query
    |
    v
[REAL Search] --> PubMed + ClinicalTrials + Europe PMC APIs
    |
    v
[REAL Embeddings] --> Actual sentence-transformers
    |
    v
[REAL Hypothesis] --> Actual LLM reasoning
    |
    v
[REAL Judge] --> Actual LLM assessment
    |
    +---> Need more? --> Loop back to Search
    |
    +---> Sufficient --> Continue
    |
    v
[REAL Report] --> Actual LLM synthesis
    |
    v
Publication-Quality Research Report

Why No Mocks?

"Authenticity is the feature."

Mocks belong in tests/unit/, not in demos. When you run these examples, you see:

  • Real papers from real databases
  • Real AI reasoning about real evidence
  • Real scientific hypotheses
  • Real research reports

This is what The DETERMINATOR actually does. No fake data. No canned responses.