import os import torch import gradio as gr import os.path as op import pyarabic.araby as araby from artst.tasks.artst import ArTSTTask from transformers import SpeechT5HifiGan from artst.models.artst import ArTSTTransformerModel from fairseq.tasks.hubert_pretraining import LabelEncoder from fairseq.data.audio.speech_to_text_dataset import get_features_or_waveform device = torch.device("cuda" if torch.cuda.is_available() else "cpu") WORK_DIR = os.getcwd() checkpoint = torch.load('ckpts/clartts_tts.pt') checkpoint['cfg']['task'].t5_task = 't2s' checkpoint['cfg']['task'].hubert_label_dir = "utils/" checkpoint['cfg']['task'].bpe_tokenizer = "utils/arabic.model" checkpoint['cfg']['task'].data = "utils/" task = ArTSTTask.setup_task(checkpoint['cfg']['task']) emb_path='embs/clartts.npy' model = ArTSTTransformerModel.build_model(checkpoint['cfg']['model'], task) model.load_state_dict(checkpoint['model']) checkpoint['cfg']['task'].bpe_tokenizer = task.build_bpe(checkpoint['cfg']['model']) tokenizer = checkpoint['cfg']['task'].bpe_tokenizer processor = LabelEncoder(task.dicts['text']) vocoder = SpeechT5HifiGan.from_pretrained('microsoft/speecht5_hifigan').to(device) def get_embs(emb_path): spkembs = get_features_or_waveform(emb_path) spkembs = torch.from_numpy(spkembs).float().unsqueeze(0) return spkembs def process_text(text): text = araby.strip_diacritics(text) return processor(tokenizer.encode(text)).reshape(1, -1) net_input = {} def inference(text, spkr=emb_path): net_input['src_tokens'] = process_text(text) net_input['spkembs'] = get_embs(spkr) outs, _, attn = task.generate_speech( [model], net_input, ) with torch.no_grad(): gen_audio = vocoder(outs.to(device)) return (16000,gen_audio.cpu().numpy()) text_box = gr.Textbox(max_lines=2, label="Arabic Text") out = gr.Audio(label="Synthesized Audio", type="numpy") demo = gr.Interface(inference, \ inputs=text_box, outputs=out, title="ArTST") if __name__ == "__main__": demo.launch(share=True)