import envs import deciders import distillers import prompts as task_prompts import datetime import time from envs.translator import InitSummarizer, CurrSummarizer, FutureSummarizer, Translator import gym import pandas as pd import random import datetime from loguru import logger from argparse import Namespace import gradio as gr import subprocess import openai import os import shutil import subprocess from pathlib import Path from urllib.request import urlretrieve def set_seed(seed): random.seed(seed) def main_progress( api_type, openai_key, env_name, decider_name, prompt_level, num_trails, seed ): init_summarizer = env_name.split("-")[0] + '_init_translator' curr_summarizer = env_name.split("-")[0] + '_basic_translator' if "Represented" not in init_summarizer: init_summarizer = init_summarizer.lower() curr_summarizer = curr_summarizer.lower() args = Namespace( env_name=env_name, init_summarizer=init_summarizer, curr_summarizer=curr_summarizer, decider=decider_name, prompt_level=prompt_level, num_trails=num_trails, seed=seed, future_summarizer=None, env="base_env", gpt_version="gpt-3.5-turbo", render="rgb_array", max_episode_len=200, max_query_tokens=5000, max_tokens=2000, distiller="traj_distiller", prompt_path=None, use_short_mem=1, short_mem_num=10, is_only_local_obs=1, api_type=api_type, ) if args.api_type != "azure" and args.api_type != "openai": raise ValueError(f"The {args.api_type} is not supported, please use 'azure' or 'openai' !") # Please note when using "azure", the model name is gpt-35-turbo while using "openai", the model name is "gpt-3.5-turbo" if args.api_type == "azure": if args.gpt_version == "gpt-3.5-turbo": args.gpt_version = 'gpt-35-turbo' elif args.api_type == "openai": if args.gpt_version == "gpt-35-turbo": args.gpt_version = 'gpt-3.5-turbo' # Get the specified translator, environment, and ChatGPT model env_class = envs.REGISTRY[args.env] init_summarizer = InitSummarizer(envs.REGISTRY[args.init_summarizer], args) curr_summarizer = CurrSummarizer(envs.REGISTRY[args.curr_summarizer]) if args.future_summarizer: future_summarizer = FutureSummarizer( envs.REGISTRY[args.future_summarizer], envs.REGISTRY["cart_policies"], future_horizon=args.future_horizon, ) else: future_summarizer = None decider_class = deciders.REGISTRY[args.decider] distiller_class = distillers.REGISTRY[args.distiller] sampling_env = envs.REGISTRY["sampling_wrapper"](gym.make(args.env_name)) if args.prompt_level == 5: prompts_class = task_prompts.REGISTRY[(args.env_name,args.decider)]() else: prompts_class = task_prompts.REGISTRY[(args.decider)]() translator = Translator( init_summarizer, curr_summarizer, future_summarizer, env=sampling_env ) environment = env_class( gym.make(args.env_name, render_mode=args.render), translator ) logfile = ( f"llm.log/output-{args.env_name}-{args.decider}-{args.gpt_version}-l{args.prompt_level}" f"-{datetime.datetime.now().timestamp()}.log" ) logfile_reflexion = ( f"llm.log/memory-{args.env_name}-{args.decider}-{args.gpt_version}-l{args.prompt_level}" f"-{datetime.datetime.now().timestamp()}.log" ) my_distiller = distiller_class(logfile=logfile_reflexion,args=args) args.game_description = environment.game_description args.goal_description = environment.goal_description args.action_description = environment.action_description args.action_desc_dict = environment.action_desc_dict args.reward_desc_dict = environment.reward_desc_dict logger.add(logfile, colorize=True, enqueue=True, filter=lambda x: '[Reflexion Memory]' not in x['message']) decider = decider_class(openai_key, environment.env.action_space, args, prompts_class, my_distiller, temperature=0.0, logger=logger, max_tokens=args.max_tokens) # Evaluate the translator utilities = [] df = pd.read_csv('record_reflexion.csv', sep=',') filtered_df = df[(df['env'] == args.env_name) & (df['decider'] == 'expert') & (df['level'] == 1)] expert_score = filtered_df['avg_score'].item() seeds = [i for i in range(1000)] # prompt_file = "prompt.txt" # f = open(prompt_file,"w+") num_trails = args.num_trails if not "Blackjack" in args.env_name: curriculums = 1 else: curriculums = 20 for curriculum in range(curriculums): for trail in range(num_trails): if "Blackjack" in args.env_name: seed = seeds[curriculum*curriculums + num_trails - trail - 1] else: seed = args.seed # single run # Reset the environment if not "Blackjack" in args.env_name: set_seed(args.seed) seed = args.seed # Reset the environment state_description, env_info = environment.reset(seed=args.seed) else: set_seed(seed) # Reset the environment state_description, env_info = environment.reset(seed=seed) game_description = environment.get_game_description() goal_description = environment.get_goal_description() action_description = environment.get_action_description() # Initialize the statistics frames = [] utility = 0 current_total_tokens = 0 current_total_cost = 0 # state_description, prompt, response, action = None, None, None, None start_time = datetime.datetime.now() # Run the game for a maximum number of steps for round in range(args.max_episode_len): # Keep asking ChatGPT for an action until it provides a valid one error_flag = True retry_num = 1 for error_i in range(retry_num): try: action, prompt, response, tokens, cost = decider.act( state_description, action_description, env_info, game_description, goal_description, logfile ) state_description, reward, termination, truncation, env_info = environment.step_llm( action ) if "Cliff" in args.env_name or "Frozen" in args.env_name: decider.env_history.add('reward', env_info['potential_state'] + environment.reward_desc_dict[reward]) else: decider.env_history.add('reward', f"The player get rewards {reward}.") utility += reward # Update the statistics current_total_tokens += tokens current_total_cost += cost error_flag = False break except Exception as e: print(e) raise e if error_i < retry_num-1: if "Cliff" in args.env_name or "Frozen" in args.env_name: decider.env_history.remove_invalid_state() decider.env_history.remove_invalid_state() if logger: logger.debug(f"Error: {e}, Retry! ({error_i+1}/{retry_num})") continue if error_flag: action = decider.default_action state_description, reward, termination, truncation, env_info = environment.step_llm( action ) decider.env_history.add('action', decider.default_action) if "Cliff" in args.env_name or "Frozen" in args.env_name: # decider.env_history.add('reward', reward) decider.env_history.add('reward', env_info['potential_state'] + environment.reward_desc_dict[reward]) utility += reward logger.info(f"Seed: {seed}") logger.info(f'The optimal action is: {decider.default_action}.') logger.info(f"Now it is round {round}.") else: current_total_tokens += tokens current_total_cost += cost logger.info(f"Seed: {seed}") logger.info(f"current_total_tokens: {current_total_tokens}") logger.info(f"current_total_cost: {current_total_cost}") logger.info(f"Now it is round {round}.") # return results yield environment.render(), state_description, prompt, response, action if termination or truncation: if logger: logger.info(f"Terminated!") break time.sleep(5) decider.env_history.add( 'terminate_state', environment.get_terminate_state(round+1, args.max_episode_len)) decider.env_history.add("cummulative_reward", str(utility)) # Record the final reward if logger: logger.info(f"Cummulative reward: {utility}.") end_time = datetime.datetime.now() time_diff = end_time - start_time logger.info(f"Time consumer: {time_diff.total_seconds()} s") utilities.append(utility) # TODO: set env sucess utility threshold if trail < num_trails -1: if args.decider in ['reflexion']: if utility < expert_score: decider.update_mem() else: decider.update_mem() decider.clear_mem() return utilities # def pause(): # for i in range(31415926): # time.sleep(0.1) # yield i if __name__ == "__main__": # Github action test 8 # install Atari ROMs subprocess.run(['AutoROM', '--accept-license']) # install mujoco # Step 1: Download and set up MuJoCo MUJOCO_URL = "https://github.com/google-deepmind/mujoco/releases/download/2.1.0/mujoco210-linux-x86_64.tar.gz" MUJOCO_FILENAME = "mujoco210-linux-x86_64.tar.gz" # Download MuJoCo print("Downloading MuJoCo...") urlretrieve(MUJOCO_URL, MUJOCO_FILENAME) # Create and move to ~/.mujoco directory mujoco_dir = Path.home() / ".mujoco" mujoco_dir.mkdir(exist_ok=True) shutil.move(MUJOCO_FILENAME, str(mujoco_dir / MUJOCO_FILENAME)) # Extract the file print("Extracting MuJoCo...") subprocess.run(["tar", "-zxvf", str(mujoco_dir / MUJOCO_FILENAME)], cwd=mujoco_dir) # Edit .bashrc bashrc_path = Path.home() / ".bashrc" mujoco_path = mujoco_dir / "mujoco210" / "bin" export_line = f"export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:{mujoco_path}\n" with open(bashrc_path, "a") as bashrc_file: bashrc_file.write(export_line) # Set LD_LIBRARY_PATH for the current process ld_lib_path = os.environ.get("LD_LIBRARY_PATH", "") new_ld_lib_path = f"{ld_lib_path}{mujoco_path}" os.environ["LD_LIBRARY_PATH"] = new_ld_lib_path # Step 2: Install gym[mujoco] print("Installing gym[MuJoCo]...") subprocess.run(["pip", "install", "gym[mujoco]"]) # # Set render os.environ["MUJOCO_GL"] = "egl" # os.environ["DISPLAY"] = ":0" # print(f'LD_LIBRARY_PATH: {os.environ["LD_LIBRARY_PATH"]}') # assert os.path.exists(str(mujoco_path)) # subprocess.run("cp -r /home/user/.mujoco/mujoco210/bin/* /usr/lib/", shell=True) # import mujoco_py # flag = 'gpu' in str(mujoco_py.cymj).split('/')[-1] # print(f'flag: {flag}') # if not flag: # ld_lib_path = os.environ.get("LD_LIBRARY_PATH", "") # new_ld_lib_path = f"{ld_lib_path}:/usr/lib/nvidia-000" # os.environ["LD_LIBRARY_PATH"] = new_ld_lib_path # subprocess.run(["sudo", "mkdir", "-p", "/usr/lib/nvidia-000"]) # assert 'gpu' in str(mujoco_py.cymj).split('/')[-1] custom_css = """ #render { flex-grow: 1; } #input_text .tabs { display: flex; flex-direction: column; flex-grow: 1; } #input_text .tabitem[style="display: block;"] { flex-grow: 1; display: flex !important; } #input_text .gap { flex-grow: 1; } #input_text .form { flex-grow: 1 !important; } #input_text .form > :last-child{ flex-grow: 1; } """ with gr.Blocks(theme=gr.themes.Monochrome(), css=custom_css) as demo: with gr.Row(): api_type = gr.Dropdown(["azure", "openai"], label="API Type", scale=1) openai_key = gr.Textbox(label="OpenAI API Key", type="password", scale=3) with gr.Row(): env_name = gr.Dropdown( ["CartPole-v0", "LunarLander-v2", "Acrobot-v1", "MountainCar-v0", "Blackjack-v1", "Taxi-v3", "CliffWalking-v0", "FrozenLake-v1", "MountainCarContinuous-v0", "Ant-v4", "HalfCheetah-v4", "Hopper-v4", "Walker2d-v4", "Swimmer-v4", "Reacher-v4", "Pusher-v4", "RepresentedBoxing-v0", "RepresentedPong-v0", "RepresentedMsPacman-v0", "RepresentedMontezumaRevenge-v0"], label="Environment Name") decider_name = gr.Dropdown( ["naive_actor", "cot_actor", "spp_actor", "reflexion_actor"], label="Decider") # prompt_level = gr.Dropdown([1, 2, 3, 4, 5], label="Prompt Level") # TODO: support more prompt levels prompt_level = gr.Dropdown([1, 3], label="Prompt Level") with gr.Row(): num_trails = gr.Slider(1, 100, 1, label="Number of Trails", scale=2) seed = gr.Slider(1, 1000, 1, label="Seed", scale=2) run = gr.Button("Run", scale=1) # pause_ = gr.Button("Pause") # resume = gr.Button("Resume") stop = gr.Button("Stop", scale=1) with gr.Row(): with gr.Column(): render = gr.Image(label="render", elem_id="render") with gr.Column(elem_id="input_text"): state = gr.Textbox(label="translated state") prompt = gr.Textbox(label="prompt", max_lines=20) with gr.Row(): response = gr.Textbox(label="response") action = gr.Textbox(label="parsed action") run_event = run.click( fn=main_progress, inputs=[ api_type, openai_key, env_name, decider_name, prompt_level, num_trails, seed], outputs=[render, state, prompt, response, action]) stop.click(fn=None, inputs=None, outputs=None, cancels=[run_event]) # pause_event = pause_.click(fn=pause, inputs=None, outputs=None) # resume.click(fn=None, inputs=None, outputs=None, cancels=[pause_event]) demo.launch()