Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import soundfile as sf
|
4 |
+
from snac import SNAC
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
+
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
|
9 |
+
def find_last_instance_of_separator(lst, element=50258):
|
10 |
+
reversed_list = lst[::-1]
|
11 |
+
try:
|
12 |
+
reversed_index = reversed_list.index(element)
|
13 |
+
return len(lst) - 1 - reversed_index
|
14 |
+
except ValueError:
|
15 |
+
raise ValueError
|
16 |
+
|
17 |
+
def reconstruct_tensors(flattened_output):
|
18 |
+
def count_elements_between_hashes(lst):
|
19 |
+
try:
|
20 |
+
first_index = lst.index(50258)
|
21 |
+
second_index = lst.index(50258, first_index + 1)
|
22 |
+
return second_index - first_index - 1
|
23 |
+
except ValueError:
|
24 |
+
return "List does not contain two '#' symbols"
|
25 |
+
|
26 |
+
def remove_elements_before_hash(flattened_list):
|
27 |
+
try:
|
28 |
+
first_hash_index = flattened_list.index(50258)
|
29 |
+
return flattened_list[first_hash_index:]
|
30 |
+
except ValueError:
|
31 |
+
return "List does not contain the symbol '#'"
|
32 |
+
|
33 |
+
def list_to_torch_tensor(tensor1):
|
34 |
+
tensor = torch.tensor(tensor1)
|
35 |
+
tensor = tensor.unsqueeze(0)
|
36 |
+
return tensor
|
37 |
+
|
38 |
+
flattened_output = remove_elements_before_hash(flattened_output)
|
39 |
+
last_index = find_last_instance_of_separator(flattened_output)
|
40 |
+
flattened_output = flattened_output[:last_index]
|
41 |
+
|
42 |
+
codes = []
|
43 |
+
tensor1 = []
|
44 |
+
tensor2 = []
|
45 |
+
tensor3 = []
|
46 |
+
tensor4 = []
|
47 |
+
|
48 |
+
n_tensors = count_elements_between_hashes(flattened_output)
|
49 |
+
if n_tensors == 7:
|
50 |
+
for i in range(0, len(flattened_output), 8):
|
51 |
+
tensor1.append(flattened_output[i+1])
|
52 |
+
tensor2.append(flattened_output[i+2])
|
53 |
+
tensor3.append(flattened_output[i+3])
|
54 |
+
tensor3.append(flattened_output[i+4])
|
55 |
+
tensor2.append(flattened_output[i+5])
|
56 |
+
tensor3.append(flattened_output[i+6])
|
57 |
+
tensor3.append(flattened_output[i+7])
|
58 |
+
codes = [list_to_torch_tensor(tensor1).to(device), list_to_torch_tensor(tensor2).to(device), list_to_torch_tensor(tensor3).to(device)]
|
59 |
+
|
60 |
+
if n_tensors == 15:
|
61 |
+
for i in range(0, len(flattened_output), 16):
|
62 |
+
tensor1.append(flattened_output[i+1])
|
63 |
+
tensor2.append(flattened_output[i+2])
|
64 |
+
tensor3.append(flattened_output[i+3])
|
65 |
+
tensor4.append(flattened_output[i+4])
|
66 |
+
tensor4.append(flattened_output[i+5])
|
67 |
+
tensor3.append(flattened_output[i+6])
|
68 |
+
tensor4.append(flattened_output[i+7])
|
69 |
+
tensor4.append(flattened_output[i+8])
|
70 |
+
tensor2.append(flattened_output[i+9])
|
71 |
+
tensor3.append(flattened_output[i+10])
|
72 |
+
tensor4.append(flattened_output[i+11])
|
73 |
+
tensor4.append(flattened_output[i+12])
|
74 |
+
tensor3.append(flattened_output[i+13])
|
75 |
+
tensor4.append(flattened_output[i+14])
|
76 |
+
tensor4.append(flattened_output[i+15])
|
77 |
+
codes = [list_to_torch_tensor(tensor1).to(device), list_to_torch_tensor(tensor2).to(device), list_to_torch_tensor(tensor3).to(device), list_to_torch_tensor(tensor4).to(device)]
|
78 |
+
|
79 |
+
return codes
|
80 |
+
|
81 |
+
def load_model():
|
82 |
+
tokenizer = AutoTokenizer.from_pretrained("Lwasinam/voicera-jenny-finetune")
|
83 |
+
model = AutoModelForCausalLM.from_pretrained("Lwasinam/voicera-jenny-finetune").to(device)
|
84 |
+
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval()
|
85 |
+
return model, tokenizer, snac_model
|
86 |
+
|
87 |
+
def SpeechDecoder(codes, snac_model):
|
88 |
+
codes = codes.squeeze(0).tolist()
|
89 |
+
reconstructed_codes = reconstruct_tensors(codes)
|
90 |
+
audio_hat = snac_model.to(device).decode(reconstructed_codes)
|
91 |
+
audio_path = "reconstructed_audio.wav"
|
92 |
+
sf.write(audio_path, audio_hat.squeeze().cpu().detach().numpy(), 24000)
|
93 |
+
return audio_path
|
94 |
+
|
95 |
+
def generate_audio(text, tokenizer, model, snac_model):
|
96 |
+
output_codes = []
|
97 |
+
with torch.no_grad():
|
98 |
+
input_text = text
|
99 |
+
input_ids = tokenizer(input_text, return_tensors='pt').to(device)
|
100 |
+
output_codes = model.generate(input_ids['input_ids'], attention_mask=input_ids['attention_mask'], max_length=1024,
|
101 |
+
num_beams=5, top_p=0.95, temperature=0.8, do_sample=True, repetition_penalty=2.0)
|
102 |
+
audio_path = SpeechDecoder(output_codes, snac_model)
|
103 |
+
return audio_path
|
104 |
+
|
105 |
+
def main(text):
|
106 |
+
model, tokenizer, snac_model = load_model()
|
107 |
+
audio_path = generate_audio(text, tokenizer, model, snac_model)
|
108 |
+
return audio_path
|
109 |
+
|
110 |
+
# Define the Gradio interface
|
111 |
+
iface = gr.Interface(
|
112 |
+
fn=main,
|
113 |
+
inputs=gr.inputs.Textbox(label="Enter text:", lines=2, placeholder="Type your text here..."),
|
114 |
+
outputs="audio",
|
115 |
+
title="Voicera TTS",
|
116 |
+
description="Generate speech from text using Voicera TTS model."
|
117 |
+
)
|
118 |
+
|
119 |
+
if __name__ == "__main__":
|
120 |
+
iface.launch()
|