import gradio as gr import requests import json from PIL import Image def compare_face(frame1, frame2): url = "http://127.0.0.1:8000/api/compare_face" files = {'image1': open(frame1, 'rb'), 'image2': open(frame2, 'rb')} r = requests.post(url=url, files=files) faces = None try: image1 = Image.open(frame1) image2 = Image.open(frame2) face1 = None face2 = None data = r.json().get('data') if data.get('face1') is not None: face = data.get('face1') x1 = face.get('x1') y1 = face.get('y1') x2 = face.get('x2') y2 = face.get('y2') if x1 < 0: x1 = 0 if y1 < 0: y1 = 0 if x2 >= image1.width: x2 = image1.width - 1 if y2 >= image1.height: y2 = image1.height - 1 face1 = image1.crop((x1, y1, x2, y2)) face_image_ratio = face1.width / float(face1.height) resized_w = int(face_image_ratio * 150) resized_h = 150 face1 = face1.resize((int(resized_w), int(resized_h))) if data.get('face2') is not None: face = data.get('face2') x1 = face.get('x1') y1 = face.get('y1') x2 = face.get('x2') y2 = face.get('y2') if x1 < 0: x1 = 0 if y1 < 0: y1 = 0 if x2 >= image2.width: x2 = image2.width - 1 if y2 >= image2.height: y2 = image2.height - 1 face2 = image2.crop((x1, y1, x2, y2)) face_image_ratio = face2.width / float(face2.height) resized_w = int(face_image_ratio * 150) resized_h = 150 face2 = face2.resize((int(resized_w), int(resized_h))) if face1 is not None and face2 is not None: new_image = Image.new('RGB',(face1.width + face2.width + 10, 150), (80,80,80)) new_image.paste(face1,(0,0)) new_image.paste(face2,(face1.width + 10, 0)) faces = new_image.copy() elif face1 is not None and face2 is None: new_image = Image.new('RGB',(face1.width + face1.width + 10, 150), (80,80,80)) new_image.paste(face1,(0,0)) faces = new_image.copy() elif face1 is None and face2 is not None: new_image = Image.new('RGB',(face2.width + face2.width + 10, 150), (80,80,80)) new_image.paste(face2,(face2.width + 10, 0)) faces = new_image.copy() except: pass return [r.json(), faces] with gr.Blocks() as demo: gr.Markdown( """ # Face Recognition Get your own Face Recognition Server by duplicating this space.
Or run on your own machine using docker.
```docker run -it -p 7860:7860 --platform=linux/amd64 \ -e LICENSE_KEY="YOUR_VALUE_HERE" \ registry.hf.space/faceonlive-face-recognition-sdk:latest ```

Contact us at https://faceonlive.com for issues and support.
""" ) with gr.Row(): with gr.Column(): compare_face_input1 = gr.Image(type='filepath', height=480) gr.Examples(['gradio/examples/1.jpg', 'gradio/examples/2.jpg'], inputs=compare_face_input1) compare_face_button = gr.Button("Compare Face") with gr.Column(): compare_face_input2 = gr.Image(type='filepath', height=480) gr.Examples(['gradio/examples/3.jpg', 'gradio/examples/4.jpg'], inputs=compare_face_input2) with gr.Column(): compare_face_output = gr.Image(type="pil", height=150) compare_result_output = gr.JSON(label='Result') compare_face_button.click(compare_face, inputs=[compare_face_input1, compare_face_input2], outputs=[compare_result_output, compare_face_output]) demo.launch(server_name="0.0.0.0", server_port=7860)