Spaces:
Sleeping
Sleeping
File size: 4,947 Bytes
602f500 ae9ed1e 602f500 ae9ed1e 602f500 ae9ed1e d1e4dc7 602f500 ae9ed1e 602f500 ae9ed1e 602f500 ae9ed1e 602f500 ae9ed1e 602f500 ae9ed1e 602f500 ae9ed1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import gradio as gr
from textblob import TextBlob
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import torch
import base64
import numpy as np
import ffmpeg
# 1. Set up device and data type for optimized performance
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# 2. Define the model ID for the large Whisper model
model_id = "openai/whisper-small"
# 3. Load the model from pretrained weights
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
# 4. Load the processor which includes the feature extractor and tokenizer
processor = AutoProcessor.from_pretrained(model_id)
# 5. Create the ASR pipeline with the loaded components
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
torch_dtype=torch_dtype,
device=device,
)
def sentiment_analysis(text: str) -> dict:
"""
Analyze the sentiment of the given text. (This function is unchanged)
"""
blob = TextBlob(text)
sentiment = blob.sentiment
return {
"transcript": text,
"polarity": round(sentiment.polarity, 2),
"subjectivity": round(sentiment.subjectivity, 2),
"assessment": "positive" if sentiment.polarity > 0 else "negative" if sentiment.polarity < 0 else "neutral"
}
def process_base64_audio(base64_data_uri: str) -> dict:
"""
Decodes a Base64 audio data URI, processes it in-memory,
transcribes it using a Hugging Face Whisper pipeline, and then analyzes its sentiment.
Args:
base64_data_uri (str): A string in data URI format (e.g., "data:audio/wav;base64,UklGRi...").
Returns:
dict: The sentiment analysis result or an error message.
"""
if not base64_data_uri or "base64," not in base64_data_uri:
return {"error": "Invalid or empty Base64 data URI provided."}
try:
# Parse the data URI to extract the Base64 encoded data
_, encoded_data = base64_data_uri.split(',', 1)
# Decode the Base64 string into binary audio data
audio_data = base64.b64decode(encoded_data)
# Use ffmpeg to convert the in-memory audio data to a raw PCM buffer.
# The pipeline expects a 16kHz mono audio stream.
out, _ = (
ffmpeg
.input('pipe:0')
.output('pipe:1', format='s16le', ac=1, ar=16000)
.run(input=audio_data, capture_stdout=True, capture_stderr=True)
)
# Convert the raw PCM buffer to a NumPy array of 32-bit floats.
audio_np = np.frombuffer(out, np.int16).astype(np.float32) / 32768.0
# Transcribe the audio from the NumPy array using the HF pipeline
transcription_result = pipe(audio_np)
transcript_text = transcription_result["text"]
except Exception as e:
# Capture potential errors from ffmpeg or the model
return {"error": f"Failed to process audio: {str(e)}"}
# Perform sentiment analysis on the transcribed text
return sentiment_analysis(transcript_text)
# Create the Gradio interface with the Hugging Face theme
demo = gr.Interface(
fn=process_base64_audio,
# The input remains a Textbox to accept the raw Base64 string from the API client
inputs=gr.Textbox(lines=5, placeholder="Paste your Base64 encoded audio data URI here...", label="Base64 Audio Input"),
outputs=gr.JSON(label="Analysis Result"),
title="🎙️ Audio Sentiment Analysis (Whisper Large v3)",
description="""
Analyze the sentiment of spoken words.
This tool accepts a **Base64 encoded audio data URI**, transcribes the audio in-memory using the `openai/whisper-large-v3` model,
and performs sentiment analysis on the text with TextBlob.
""",
examples=[
["data:audio/wav;base64,UklGRiQ...<placeholder_for_a_short_positive_clip>"],
["data:audio/wav;base64,UklGRiQ...<placeholder_for_a_short_negative_clip>"]
],
article="""
### How to get a Base64 Audio URI?
You can use an online converter or a script (like the provided `test_client.py`) to convert a short audio file (e.g., .wav or .mp3) into a Base64 data URI.
The format must be `data:audio/[format];base64,[encoded_string]`.
""",
theme='huggingface' # This applies the new theme
)
# Launch the interface and MCP server
if __name__ == "__main__":
# You will need to have ffmpeg installed on your system for this to work.
# You also need to install the required python packages. This model is large and requires significant resources.
# pip install gradio textblob "transformers[torch]" accelerate safetensors ffmpeg-python numpy
demo.launch(mcp_server=True)
|