import gradio as gr import torch import json from model import create_flan_T5_model from timeit import default_timer as timer from typing import Tuple, Dict device = "cuda" if torch.cuda.is_available() else "cpu" ### Load example texts ### with open("data.json", 'r', encoding='utf-8') as f: loaded_data = json.load(f) questions_texts = loaded_data["questions"] system_prompts = loaded_data["system_prompts"] response_texts = loaded_data["responses"] ### Model and transforms preparation ### # Create model and tokenizer model, tokenizer = create_flan_T5_model() # Load saved weights model.load_state_dict( torch.load(f="flan-t5-small.pth", map_location=torch.device("cpu")) # load to CPU ) ### Predict function ### def predict(selection: str) -> Tuple[Dict, str, float]: start_time = timer() model.eval() # Extract the question part from the selection # Assuming the format "Prompt: {prompt} | Question: {question}" question = selection.split("| Question: ")[1] # Find the index of the question idx = questions_texts.index(question) # Now, use the index to get the system prompt and actual response system_prompt = system_prompts[idx] response = response_texts[idx] input_text = f"context: {system_prompt} question: {question}" model_inputs = tokenizer(input_text, return_tensors="pt", max_length=512, padding='max_length', truncation=True).to(device) with torch.inference_mode(): predicted_token_ids = model.generate(input_ids=model_inputs['input_ids'], attention_mask=model_inputs['attention_mask'], max_length=128) result = tokenizer.decode(predicted_token_ids[0], skip_special_tokens=True) end_time = timer() pred_time = round(end_time - start_time, 4) return {"Predicted Answer": result}, {"Actual Answer": response}, pred_time ### 4. Gradio app ### # Create title, description and article title = "Prompt Answering with Google's flan-t5-small" description = "[google/flan-t5-small based model](https://huggingface.co/google/flan-t5-small) LLM model trained to take prompts and tasks on the [HuggingFace 🤗 Open-Orca/OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca). [Source Code Found Here](https://colab.research.google.com/drive/1sIScjt_hyNegHC15Y76JVXEOUvdD_2dh?usp=sharing)" article = "Built with [Gradio](https://github.com/gradio-app/gradio) and [PyTorch](https://pytorch.org/). [Source Code Found Here](https://colab.research.google.com/drive/1sIScjt_hyNegHC15Y76JVXEOUvdD_2dh?usp=sharing)" dropdown_choices = [f"Prompt: {prompt} | Question: {question}" for prompt, question in zip(system_prompts, questions_texts)] # Create the Gradio demo demo = gr.Interface(fn=predict, inputs=gr.Dropdown(choices=dropdown_choices, label="Select a Question and Prompt"), outputs=[ gr.JSON(label="Predicted Answer"), gr.Textbox(label="Actual Answer"), gr.Number(label="Prediction time (s)") ], title=title, description=description, article=article) # Launch the demo demo.launch()