#!/usr/bin/env python import gradio as gr import PIL.Image from model import ADAPTER_NAMES, Model from utils import MAX_SEED, randomize_seed_fn style_list = [ { "name": "Cinematic", "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", }, { "name": "3D Model", "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", }, { "name": "Anime", "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", }, { "name": "Digital Art", "prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed", "negative_prompt": "photo, photorealistic, realism, ugly", }, { "name": "Photographic", "prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed", "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", }, { "name": "Pixel art", "prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics", "negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic", }, { "name": "Fantasy art", "prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white", }, ] styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} default_style_name = "Photographic" default_style = styles[default_style_name] style_names = list(styles.keys()) def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]: p, n = styles.get(style_name, default_style) return p.replace("{prompt}", positive), n + negative def create_demo(model: Model) -> gr.Blocks: def run( image: PIL.Image.Image, prompt: str, negative_prompt: str, adapter_name: str, style_name: str = default_style_name, num_inference_steps: int = 30, guidance_scale: float = 5.0, adapter_conditioning_scale: float = 1.0, cond_tau: float = 1.0, seed: int = 0, apply_preprocess: bool = True, progress=gr.Progress(track_tqdm=True), ) -> list[PIL.Image.Image]: prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) return model.run( image=image, prompt=prompt, negative_prompt=negative_prompt, adapter_name=adapter_name, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, adapter_conditioning_scale=adapter_conditioning_scale, cond_tau=cond_tau, seed=seed, apply_preprocess=apply_preprocess, ) with gr.Blocks() as demo: with gr.Row(): with gr.Column(): with gr.Group(): image = gr.Image(label="Input image", type="pil", height=600) prompt = gr.Textbox(label="Prompt") adapter_name = gr.Dropdown(label="Adapter", choices=ADAPTER_NAMES, value=ADAPTER_NAMES[0]) run_button = gr.Button("Run") with gr.Accordion("Advanced options", open=False): apply_preprocess = gr.Checkbox(label="Apply preprocess", value=True) negative_prompt = gr.Textbox( label="Negative prompt", value="anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", ) style = gr.Dropdown(choices=style_names, value=default_style_name, label="Style") num_inference_steps = gr.Slider( label="Number of steps", minimum=1, maximum=Model.MAX_NUM_INFERENCE_STEPS, step=1, value=30, ) guidance_scale = gr.Slider( label="Guidance scale", minimum=0.1, maximum=30.0, step=0.1, value=5.0, ) adapter_conditioning_scale = gr.Slider( label="Adapter Conditioning Scale", minimum=0.5, maximum=1, step=0.1, value=1.0, ) cond_tau = gr.Slider( label="Fraction of timesteps for which adapter should be applied", minimum=0.5, maximum=1.0, step=0.1, value=1.0, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Column(): result = gr.Gallery(label="Result", columns=2, height=600, object_fit="scale-down", show_label=False) inputs = [ image, prompt, negative_prompt, adapter_name, style, num_inference_steps, guidance_scale, adapter_conditioning_scale, cond_tau, seed, apply_preprocess, ] prompt.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=run, inputs=inputs, outputs=result, api_name=False, ) negative_prompt.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=run, inputs=inputs, outputs=result, api_name=False, ) run_button.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=run, inputs=inputs, outputs=result, api_name="run", ) return demo if __name__ == "__main__": model = Model(ADAPTER_NAMES[0]) demo = create_demo(model) demo.queue(max_size=20).launch()