INDUCTION - REVIEW SET 2 CSC 335

PROFESSOR TROEGER

Again, I strongly recommend David Liben-Nowell's excellent text, Discrete Mathematics for Computer Science, published by Wiley. These problems are from his Chapter 5.
(1) In chess, a knight at position $\langle r, c\rangle$ can move in an L-shaped pattern to any of eight positions: moving over one row and up/down two columns, or two rows over and one column up/down. A knight's walk is a sequence of legal moves, starting from a square of your choice, that visits every square of the board. Prove by induction that there exists a knight's walk for any n-by- n chessboard, for any $n \geq 4$. Note that the knight (horse) may visit squares more than once.
(2) A string of balanced parentheses [,] is one of the following:
(a) the empty string;
(b) a string $[S]$ where S is a string of balanced parentheses; or
(c) a string $S_{1} S_{2}$ where S_{1} and S_{2} are both balanced strings of parentheses.

Prove by structural induction
(a) Every string of balanced parentheses has exactly the same number of open parentheses as close parentheses;
(b) Every prefix of a string of balanced parentheses has at least as many open parentheses as it does close parentheses

