WEAK AND STRONG INDUCTION - REVIEW SET 1 CSC 335

PROFESSOR TROEGER

I strongly recommend the text I used in CSc 104: David Liben-Nowell's excellent Discrete Mathematics for Computer Science, published by Wiley. These problems are from his Chapter 5.
(1) Prove by (weak) induction on $n: \sum_{i=0}^{i=n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
(2) Prove by (weak) induction on $n: \Sigma_{i=0}^{i=0} i^{3}=\frac{n^{4}+2 n^{3}+n^{2}}{4}$
(3) Prove by (strong) induction on n that, for every integer $n \geq 4$, it is possible to make n dollars using only two- and five-dollar bills.
(4) Prove by (strong) induction on n that, for every integer $n \geq 1$, there exist $k \geq 0$ prime numbers $p_{1}, p_{2}, \ldots, p_{k}$ such that $n=\Pi_{i=1}^{i=k} p_{i}$
(5) What is the sum of the first n odd positive integers? Prove your claim by induction.

