diff --git a/CodeFormer/.gitignore b/CodeFormer/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..216c435782d62c2387defc3b574a3b7b24cdff10
--- /dev/null
+++ b/CodeFormer/.gitignore
@@ -0,0 +1,131 @@
+.vscode
+
+# ignored files
+version.py
+
+# ignored files with suffix
+*.html
+# *.png
+# *.jpeg
+# *.jpg
+*.pt
+*.gif
+*.pth
+*.dat
+*.zip
+
+# template
+
+# Byte-compiled / optimized / DLL files
+__pycache__/
+*.py[cod]
+*$py.class
+
+# C extensions
+*.so
+
+# Distribution / packaging
+.Python
+build/
+develop-eggs/
+dist/
+downloads/
+eggs/
+.eggs/
+lib/
+lib64/
+parts/
+sdist/
+var/
+wheels/
+*.egg-info/
+.installed.cfg
+*.egg
+MANIFEST
+
+# PyInstaller
+# Usually these files are written by a python script from a template
+# before PyInstaller builds the exe, so as to inject date/other infos into it.
+*.manifest
+*.spec
+
+# Installer logs
+pip-log.txt
+pip-delete-this-directory.txt
+
+# Unit test / coverage reports
+htmlcov/
+.tox/
+.coverage
+.coverage.*
+.cache
+nosetests.xml
+coverage.xml
+*.cover
+.hypothesis/
+.pytest_cache/
+
+# Translations
+*.mo
+*.pot
+
+# Django stuff:
+*.log
+local_settings.py
+db.sqlite3
+
+# Flask stuff:
+instance/
+.webassets-cache
+
+# Scrapy stuff:
+.scrapy
+
+# Sphinx documentation
+docs/_build/
+
+# PyBuilder
+target/
+
+# Jupyter Notebook
+.ipynb_checkpoints
+
+# pyenv
+.python-version
+
+# celery beat schedule file
+celerybeat-schedule
+
+# SageMath parsed files
+*.sage.py
+
+# Environments
+.env
+.venv
+env/
+venv/
+ENV/
+env.bak/
+venv.bak/
+
+# Spyder project settings
+.spyderproject
+.spyproject
+
+# Rope project settings
+.ropeproject
+
+# mkdocs documentation
+/site
+
+# mypy
+.mypy_cache/
+
+# project
+results/
+experiments/
+tb_logger/
+run.sh
+*debug*
+*_old*
+
diff --git a/CodeFormer/README.md b/CodeFormer/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..eb05c84c8b4af589979037b0a56950ad4bf80a6d
--- /dev/null
+++ b/CodeFormer/README.md
@@ -0,0 +1,167 @@
+
+
+
+
+## Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurIPS 2022)
+
+[Paper](https://arxiv.org/abs/2206.11253) | [Project Page](https://shangchenzhou.com/projects/CodeFormer/) | [Video](https://youtu.be/d3VDpkXlueI)
+
+
+
[](https://huggingface.co/spaces/sczhou/CodeFormer) [](https://replicate.com/sczhou/codeformer) [](https://openxlab.org.cn/apps/detail/ShangchenZhou/CodeFormer) 
+
+
+[Shangchen Zhou](https://shangchenzhou.com/), [Kelvin C.K. Chan](https://ckkelvinchan.github.io/), [Chongyi Li](https://li-chongyi.github.io/), [Chen Change Loy](https://www.mmlab-ntu.com/person/ccloy/)
+
+S-Lab, Nanyang Technological University
+
+
+
+
+:star: If CodeFormer is helpful to your images or projects, please help star this repo. Thanks! :hugs:
+
+
+### Update
+- **2023.07.20**: Integrated to :panda_face: [OpenXLab](https://openxlab.org.cn/apps). Try out online demo! [](https://openxlab.org.cn/apps/detail/ShangchenZhou/CodeFormer)
+- **2023.04.19**: :whale: Training codes and config files are public available now.
+- **2023.04.09**: Add features of inpainting and colorization for cropped and aligned face images.
+- **2023.02.10**: Include `dlib` as a new face detector option, it produces more accurate face identity.
+- **2022.10.05**: Support video input `--input_path [YOUR_VIDEO.mp4]`. Try it to enhance your videos! :clapper:
+- **2022.09.14**: Integrated to :hugs: [Hugging Face](https://huggingface.co/spaces). Try out online demo! [](https://huggingface.co/spaces/sczhou/CodeFormer)
+- **2022.09.09**: Integrated to :rocket: [Replicate](https://replicate.com/explore). Try out online demo! [](https://replicate.com/sczhou/codeformer)
+- [**More**](docs/history_changelog.md)
+
+### TODO
+- [x] Add training code and config files
+- [x] Add checkpoint and script for face inpainting
+- [x] Add checkpoint and script for face colorization
+- [x] ~~Add background image enhancement~~
+
+#### :panda_face: Try Enhancing Old Photos / Fixing AI-arts
+[
](https://imgsli.com/MTI3NTE2) [
](https://imgsli.com/MTI3NTE1) [
](https://imgsli.com/MTI3NTIw)
+
+#### Face Restoration
+
+
+
+
+#### Face Color Enhancement and Restoration
+
+
+
+#### Face Inpainting
+
+
+
+
+
+### Dependencies and Installation
+
+- Pytorch >= 1.7.1
+- CUDA >= 10.1
+- Other required packages in `requirements.txt`
+```
+# git clone this repository
+git clone https://github.com/sczhou/CodeFormer
+cd CodeFormer
+
+# create new anaconda env
+conda create -n codeformer python=3.8 -y
+conda activate codeformer
+
+# install python dependencies
+pip3 install -r requirements.txt
+python basicsr/setup.py develop
+conda install -c conda-forge dlib (only for face detection or cropping with dlib)
+```
+
+
+### Quick Inference
+
+#### Download Pre-trained Models:
+Download the facelib and dlib pretrained models from [[Releases](https://github.com/sczhou/CodeFormer/releases/tag/v0.1.0) | [Google Drive](https://drive.google.com/drive/folders/1b_3qwrzY_kTQh0-SnBoGBgOrJ_PLZSKm?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EvDxR7FcAbZMp_MA9ouq7aQB8XTppMb3-T0uGZ_2anI2mg?e=DXsJFo)] to the `weights/facelib` folder. You can manually download the pretrained models OR download by running the following command:
+```
+python scripts/download_pretrained_models.py facelib
+python scripts/download_pretrained_models.py dlib (only for dlib face detector)
+```
+
+Download the CodeFormer pretrained models from [[Releases](https://github.com/sczhou/CodeFormer/releases/tag/v0.1.0) | [Google Drive](https://drive.google.com/drive/folders/1CNNByjHDFt0b95q54yMVp6Ifo5iuU6QS?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/s200094_e_ntu_edu_sg/EoKFj4wo8cdIn2-TY2IV6CYBhZ0pIG4kUOeHdPR_A5nlbg?e=AO8UN9)] to the `weights/CodeFormer` folder. You can manually download the pretrained models OR download by running the following command:
+```
+python scripts/download_pretrained_models.py CodeFormer
+```
+
+#### Prepare Testing Data:
+You can put the testing images in the `inputs/TestWhole` folder. If you would like to test on cropped and aligned faces, you can put them in the `inputs/cropped_faces` folder. You can get the cropped and aligned faces by running the following command:
+```
+# you may need to install dlib via: conda install -c conda-forge dlib
+python scripts/crop_align_face.py -i [input folder] -o [output folder]
+```
+
+
+#### Testing:
+[Note] If you want to compare CodeFormer in your paper, please run the following command indicating `--has_aligned` (for cropped and aligned face), as the command for the whole image will involve a process of face-background fusion that may damage hair texture on the boundary, which leads to unfair comparison.
+
+Fidelity weight *w* lays in [0, 1]. Generally, smaller *w* tends to produce a higher-quality result, while larger *w* yields a higher-fidelity result. The results will be saved in the `results` folder.
+
+
+🧑🏻 Face Restoration (cropped and aligned face)
+```
+# For cropped and aligned faces (512x512)
+python inference_codeformer.py -w 0.5 --has_aligned --input_path [image folder]|[image path]
+```
+
+:framed_picture: Whole Image Enhancement
+```
+# For whole image
+# Add '--bg_upsampler realesrgan' to enhance the background regions with Real-ESRGAN
+# Add '--face_upsample' to further upsample restorated face with Real-ESRGAN
+python inference_codeformer.py -w 0.7 --input_path [image folder]|[image path]
+```
+
+:clapper: Video Enhancement
+```
+# For Windows/Mac users, please install ffmpeg first
+conda install -c conda-forge ffmpeg
+```
+```
+# For video clips
+# Video path should end with '.mp4'|'.mov'|'.avi'
+python inference_codeformer.py --bg_upsampler realesrgan --face_upsample -w 1.0 --input_path [video path]
+```
+
+🌈 Face Colorization (cropped and aligned face)
+```
+# For cropped and aligned faces (512x512)
+# Colorize black and white or faded photo
+python inference_colorization.py --input_path [image folder]|[image path]
+```
+
+🎨 Face Inpainting (cropped and aligned face)
+```
+# For cropped and aligned faces (512x512)
+# Inputs could be masked by white brush using an image editing app (e.g., Photoshop)
+# (check out the examples in inputs/masked_faces)
+python inference_inpainting.py --input_path [image folder]|[image path]
+```
+### Training:
+The training commands can be found in the documents: [English](docs/train.md) **|** [简体中文](docs/train_CN.md).
+
+### Citation
+If our work is useful for your research, please consider citing:
+
+ @inproceedings{zhou2022codeformer,
+ author = {Zhou, Shangchen and Chan, Kelvin C.K. and Li, Chongyi and Loy, Chen Change},
+ title = {Towards Robust Blind Face Restoration with Codebook Lookup TransFormer},
+ booktitle = {NeurIPS},
+ year = {2022}
+ }
+
+### License
+
+This project is licensed under NTU S-Lab License 1.0. Redistribution and use should follow this license.
+
+### Acknowledgement
+
+This project is based on [BasicSR](https://github.com/XPixelGroup/BasicSR). Some codes are brought from [Unleashing Transformers](https://github.com/samb-t/unleashing-transformers), [YOLOv5-face](https://github.com/deepcam-cn/yolov5-face), and [FaceXLib](https://github.com/xinntao/facexlib). We also adopt [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) to support background image enhancement. Thanks for their awesome works.
+
+### Contact
+If you have any questions, please feel free to reach me out at `shangchenzhou@gmail.com`.
diff --git a/CodeFormer/docs/history_changelog.md b/CodeFormer/docs/history_changelog.md
new file mode 100644
index 0000000000000000000000000000000000000000..6c35e34e41747a1f32de84a267ad022da64fac3b
--- /dev/null
+++ b/CodeFormer/docs/history_changelog.md
@@ -0,0 +1,15 @@
+# History of Changelog
+
+- **2023.04.19**: :whale: Training codes and config files are public available now.
+- **2023.04.09**: Add features of inpainting and colorization for cropped face images.
+- **2023.02.10**: Include `dlib` as a new face detector option, it produces more accurate face identity.
+- **2022.10.05**: Support video input `--input_path [YOUR_VIDEO.mp4]`. Try it to enhance your videos! :clapper:
+- **2022.09.14**: Integrated to :hugs: [Hugging Face](https://huggingface.co/spaces). Try out online demo! [](https://huggingface.co/spaces/sczhou/CodeFormer)
+- **2022.09.09**: Integrated to :rocket: [Replicate](https://replicate.com/explore). Try out online demo! [](https://replicate.com/sczhou/codeformer)
+- **2022.09.04**: Add face upsampling `--face_upsample` for high-resolution AI-created face enhancement.
+- **2022.08.23**: Some modifications on face detection and fusion for better AI-created face enhancement.
+- **2022.08.07**: Integrate [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) to support background image enhancement.
+- **2022.07.29**: Integrate new face detectors of `['RetinaFace'(default), 'YOLOv5']`.
+- **2022.07.17**: Add Colab demo of CodeFormer.
+- **2022.07.16**: Release inference code for face restoration. :blush:
+- **2022.06.21**: This repo is created.
\ No newline at end of file
diff --git a/CodeFormer/docs/train.md b/CodeFormer/docs/train.md
new file mode 100644
index 0000000000000000000000000000000000000000..873ee7cc870902599508bb1e3cc1ff51a690cda0
--- /dev/null
+++ b/CodeFormer/docs/train.md
@@ -0,0 +1,37 @@
+# :milky_way: Training Procedures
+[English](train.md) **|** [简体中文](train_CN.md)
+## Preparing Dataset
+
+- Download training dataset: [FFHQ](https://github.com/NVlabs/ffhq-dataset)
+
+---
+
+## Training
+```
+For PyTorch versions >= 1.10, please replace `python -m torch.distributed.launch` in the commands below with `torchrun`.
+```
+
+### 👾 Stage I - VQGAN
+- Training VQGAN:
+ > python -m torch.distributed.launch --nproc_per_node=gpu_num --master_port=4321 basicsr/train.py -opt options/VQGAN_512_ds32_nearest_stage1.yml --launcher pytorch
+
+- After VQGAN training, you can pre-calculate code sequence for the training dataset to speed up the later training stages:
+ > python scripts/generate_latent_gt.py
+
+- If you don't require training your own VQGAN, you can find pre-trained VQGAN (`vqgan_code1024.pth`) and the corresponding code sequence (`latent_gt_code1024.pth`) in the folder of Releases v0.1.0: https://github.com/sczhou/CodeFormer/releases/tag/v0.1.0
+
+### 🚀 Stage II - CodeFormer (w=0)
+- Training Code Sequence Prediction Module:
+ > python -m torch.distributed.launch --nproc_per_node=gpu_num --master_port=4322 basicsr/train.py -opt options/CodeFormer_stage2.yml --launcher pytorch
+
+- Pre-trained CodeFormer of stage II (`codeformer_stage2.pth`) can be found in the folder of Releases v0.1.0: https://github.com/sczhou/CodeFormer/releases/tag/v0.1.0
+
+### 🛸 Stage III - CodeFormer (w=1)
+- Training Controllable Module:
+ > python -m torch.distributed.launch --nproc_per_node=gpu_num --master_port=4323 basicsr/train.py -opt options/CodeFormer_stage3.yml --launcher pytorch
+
+- Pre-trained CodeFormer (`codeformer.pth`) can be found in the folder of Releases v0.1.0: https://github.com/sczhou/CodeFormer/releases/tag/v0.1.0
+
+---
+
+:whale: The project was built using the framework [BasicSR](https://github.com/XPixelGroup/BasicSR). For detailed information on training, resuming, and other related topics, please refer to the documentation: https://github.com/XPixelGroup/BasicSR/blob/master/docs/TrainTest.md
diff --git a/CodeFormer/docs/train_CN.md b/CodeFormer/docs/train_CN.md
new file mode 100644
index 0000000000000000000000000000000000000000..c1ac2cc430749ef83672515f6eae07a9b301340f
--- /dev/null
+++ b/CodeFormer/docs/train_CN.md
@@ -0,0 +1,37 @@
+# :milky_way: 训练文档
+[English](train.md) **|** [简体中文](train_CN.md)
+
+## 准备数据集
+- 下载训练数据集: [FFHQ](https://github.com/NVlabs/ffhq-dataset)
+
+---
+
+## 训练
+```
+对于PyTorch版本 >= 1.10, 请将下面命令中的`python -m torch.distributed.launch`替换为`torchrun`.
+```
+
+### 👾 阶段 I - VQGAN
+- 训练VQGAN:
+ > python -m torch.distributed.launch --nproc_per_node=gpu_num --master_port=4321 basicsr/train.py -opt options/VQGAN_512_ds32_nearest_stage1.yml --launcher pytorch
+
+- 训练完VQGAN后,可以通过下面代码预先获得训练数据集的密码本序列,从而加速后面阶段的训练过程:
+ > python scripts/generate_latent_gt.py
+
+- 如果你不需要训练自己的VQGAN,可以在Release v0.1.0文档中找到预训练的VQGAN (`vqgan_code1024.pth`)和对应的密码本序列 (`latent_gt_code1024.pth`): https://github.com/sczhou/CodeFormer/releases/tag/v0.1.0
+
+### 🚀 阶段 II - CodeFormer (w=0)
+- 训练密码本训练预测模块:
+ > python -m torch.distributed.launch --nproc_per_node=gpu_num --master_port=4322 basicsr/train.py -opt options/CodeFormer_stage2.yml --launcher pytorch
+
+- 预训练CodeFormer第二阶段模型 (`codeformer_stage2.pth`)可以在Releases v0.1.0文档里下载: https://github.com/sczhou/CodeFormer/releases/tag/v0.1.0
+
+### 🛸 阶段 III - CodeFormer (w=1)
+- 训练可调模块:
+ > python -m torch.distributed.launch --nproc_per_node=gpu_num --master_port=4323 basicsr/train.py -opt options/CodeFormer_stage3.yml --launcher pytorch
+
+- 预训练CodeFormer模型 (`codeformer.pth`)可以在Releases v0.1.0文档里下载: https://github.com/sczhou/CodeFormer/releases/tag/v0.1.0
+
+---
+
+:whale: 该项目是基于[BasicSR](https://github.com/XPixelGroup/BasicSR)框架搭建,有关训练、Resume等详细介绍可以查看文档: https://github.com/XPixelGroup/BasicSR/blob/master/docs/TrainTest_CN.md
\ No newline at end of file
diff --git a/CodeFormer/facelib/detection/__init__.py b/CodeFormer/facelib/detection/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..5d1f8fc21542d7aba1f5aa32fc9367135e0b5035
--- /dev/null
+++ b/CodeFormer/facelib/detection/__init__.py
@@ -0,0 +1,100 @@
+import os
+import torch
+from torch import nn
+from copy import deepcopy
+
+from facelib.utils import load_file_from_url
+from facelib.utils import download_pretrained_models
+from facelib.detection.yolov5face.models.common import Conv
+
+from .retinaface.retinaface import RetinaFace
+from .yolov5face.face_detector import YoloDetector
+
+
+def init_detection_model(model_name, half=False, device='cuda'):
+ if 'retinaface' in model_name:
+ model = init_retinaface_model(model_name, half, device)
+ elif 'YOLOv5' in model_name:
+ model = init_yolov5face_model(model_name, device)
+ else:
+ raise NotImplementedError(f'{model_name} is not implemented.')
+
+ return model
+
+
+def init_retinaface_model(model_name, half=False, device='cuda'):
+ if model_name == 'retinaface_resnet50':
+ model = RetinaFace(network_name='resnet50', half=half)
+ model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth'
+ elif model_name == 'retinaface_mobile0.25':
+ model = RetinaFace(network_name='mobile0.25', half=half)
+ model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_mobilenet0.25_Final.pth'
+ else:
+ raise NotImplementedError(f'{model_name} is not implemented.')
+
+ model_path = load_file_from_url(url=model_url, model_dir='weights/facelib', progress=True, file_name=None)
+ load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
+ # remove unnecessary 'module.'
+ for k, v in deepcopy(load_net).items():
+ if k.startswith('module.'):
+ load_net[k[7:]] = v
+ load_net.pop(k)
+ model.load_state_dict(load_net, strict=True)
+ model.eval()
+ model = model.to(device)
+
+ return model
+
+
+def init_yolov5face_model(model_name, device='cuda'):
+ if model_name == 'YOLOv5l':
+ model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5l.yaml', device=device)
+ model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5l-face.pth'
+ elif model_name == 'YOLOv5n':
+ model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5n.yaml', device=device)
+ model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5n-face.pth'
+ else:
+ raise NotImplementedError(f'{model_name} is not implemented.')
+
+ model_path = load_file_from_url(url=model_url, model_dir='weights/facelib', progress=True, file_name=None)
+ load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
+ model.detector.load_state_dict(load_net, strict=True)
+ model.detector.eval()
+ model.detector = model.detector.to(device).float()
+
+ for m in model.detector.modules():
+ if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
+ m.inplace = True # pytorch 1.7.0 compatibility
+ elif isinstance(m, Conv):
+ m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
+
+ return model
+
+
+# Download from Google Drive
+# def init_yolov5face_model(model_name, device='cuda'):
+# if model_name == 'YOLOv5l':
+# model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5l.yaml', device=device)
+# f_id = {'yolov5l-face.pth': '131578zMA6B2x8VQHyHfa6GEPtulMCNzV'}
+# elif model_name == 'YOLOv5n':
+# model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5n.yaml', device=device)
+# f_id = {'yolov5n-face.pth': '1fhcpFvWZqghpGXjYPIne2sw1Fy4yhw6o'}
+# else:
+# raise NotImplementedError(f'{model_name} is not implemented.')
+
+# model_path = os.path.join('weights/facelib', list(f_id.keys())[0])
+# if not os.path.exists(model_path):
+# download_pretrained_models(file_ids=f_id, save_path_root='weights/facelib')
+
+# load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
+# model.detector.load_state_dict(load_net, strict=True)
+# model.detector.eval()
+# model.detector = model.detector.to(device).float()
+
+# for m in model.detector.modules():
+# if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
+# m.inplace = True # pytorch 1.7.0 compatibility
+# elif isinstance(m, Conv):
+# m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
+
+# return model
\ No newline at end of file
diff --git a/CodeFormer/facelib/detection/align_trans.py b/CodeFormer/facelib/detection/align_trans.py
new file mode 100644
index 0000000000000000000000000000000000000000..07f1eb365462c2ec5bbac6d1854c786b6fd6be90
--- /dev/null
+++ b/CodeFormer/facelib/detection/align_trans.py
@@ -0,0 +1,219 @@
+import cv2
+import numpy as np
+
+from .matlab_cp2tform import get_similarity_transform_for_cv2
+
+# reference facial points, a list of coordinates (x,y)
+REFERENCE_FACIAL_POINTS = [[30.29459953, 51.69630051], [65.53179932, 51.50139999], [48.02519989, 71.73660278],
+ [33.54930115, 92.3655014], [62.72990036, 92.20410156]]
+
+DEFAULT_CROP_SIZE = (96, 112)
+
+
+class FaceWarpException(Exception):
+
+ def __str__(self):
+ return 'In File {}:{}'.format(__file__, super.__str__(self))
+
+
+def get_reference_facial_points(output_size=None, inner_padding_factor=0.0, outer_padding=(0, 0), default_square=False):
+ """
+ Function:
+ ----------
+ get reference 5 key points according to crop settings:
+ 0. Set default crop_size:
+ if default_square:
+ crop_size = (112, 112)
+ else:
+ crop_size = (96, 112)
+ 1. Pad the crop_size by inner_padding_factor in each side;
+ 2. Resize crop_size into (output_size - outer_padding*2),
+ pad into output_size with outer_padding;
+ 3. Output reference_5point;
+ Parameters:
+ ----------
+ @output_size: (w, h) or None
+ size of aligned face image
+ @inner_padding_factor: (w_factor, h_factor)
+ padding factor for inner (w, h)
+ @outer_padding: (w_pad, h_pad)
+ each row is a pair of coordinates (x, y)
+ @default_square: True or False
+ if True:
+ default crop_size = (112, 112)
+ else:
+ default crop_size = (96, 112);
+ !!! make sure, if output_size is not None:
+ (output_size - outer_padding)
+ = some_scale * (default crop_size * (1.0 +
+ inner_padding_factor))
+ Returns:
+ ----------
+ @reference_5point: 5x2 np.array
+ each row is a pair of transformed coordinates (x, y)
+ """
+
+ tmp_5pts = np.array(REFERENCE_FACIAL_POINTS)
+ tmp_crop_size = np.array(DEFAULT_CROP_SIZE)
+
+ # 0) make the inner region a square
+ if default_square:
+ size_diff = max(tmp_crop_size) - tmp_crop_size
+ tmp_5pts += size_diff / 2
+ tmp_crop_size += size_diff
+
+ if (output_size and output_size[0] == tmp_crop_size[0] and output_size[1] == tmp_crop_size[1]):
+
+ return tmp_5pts
+
+ if (inner_padding_factor == 0 and outer_padding == (0, 0)):
+ if output_size is None:
+ return tmp_5pts
+ else:
+ raise FaceWarpException('No paddings to do, output_size must be None or {}'.format(tmp_crop_size))
+
+ # check output size
+ if not (0 <= inner_padding_factor <= 1.0):
+ raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)')
+
+ if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0) and output_size is None):
+ output_size = tmp_crop_size * \
+ (1 + inner_padding_factor * 2).astype(np.int32)
+ output_size += np.array(outer_padding)
+ if not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1]):
+ raise FaceWarpException('Not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1])')
+
+ # 1) pad the inner region according inner_padding_factor
+ if inner_padding_factor > 0:
+ size_diff = tmp_crop_size * inner_padding_factor * 2
+ tmp_5pts += size_diff / 2
+ tmp_crop_size += np.round(size_diff).astype(np.int32)
+
+ # 2) resize the padded inner region
+ size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2
+
+ if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]:
+ raise FaceWarpException('Must have (output_size - outer_padding)'
+ '= some_scale * (crop_size * (1.0 + inner_padding_factor)')
+
+ scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0]
+ tmp_5pts = tmp_5pts * scale_factor
+ # size_diff = tmp_crop_size * (scale_factor - min(scale_factor))
+ # tmp_5pts = tmp_5pts + size_diff / 2
+ tmp_crop_size = size_bf_outer_pad
+
+ # 3) add outer_padding to make output_size
+ reference_5point = tmp_5pts + np.array(outer_padding)
+ tmp_crop_size = output_size
+
+ return reference_5point
+
+
+def get_affine_transform_matrix(src_pts, dst_pts):
+ """
+ Function:
+ ----------
+ get affine transform matrix 'tfm' from src_pts to dst_pts
+ Parameters:
+ ----------
+ @src_pts: Kx2 np.array
+ source points matrix, each row is a pair of coordinates (x, y)
+ @dst_pts: Kx2 np.array
+ destination points matrix, each row is a pair of coordinates (x, y)
+ Returns:
+ ----------
+ @tfm: 2x3 np.array
+ transform matrix from src_pts to dst_pts
+ """
+
+ tfm = np.float32([[1, 0, 0], [0, 1, 0]])
+ n_pts = src_pts.shape[0]
+ ones = np.ones((n_pts, 1), src_pts.dtype)
+ src_pts_ = np.hstack([src_pts, ones])
+ dst_pts_ = np.hstack([dst_pts, ones])
+
+ A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_)
+
+ if rank == 3:
+ tfm = np.float32([[A[0, 0], A[1, 0], A[2, 0]], [A[0, 1], A[1, 1], A[2, 1]]])
+ elif rank == 2:
+ tfm = np.float32([[A[0, 0], A[1, 0], 0], [A[0, 1], A[1, 1], 0]])
+
+ return tfm
+
+
+def warp_and_crop_face(src_img, facial_pts, reference_pts=None, crop_size=(96, 112), align_type='smilarity'):
+ """
+ Function:
+ ----------
+ apply affine transform 'trans' to uv
+ Parameters:
+ ----------
+ @src_img: 3x3 np.array
+ input image
+ @facial_pts: could be
+ 1)a list of K coordinates (x,y)
+ or
+ 2) Kx2 or 2xK np.array
+ each row or col is a pair of coordinates (x, y)
+ @reference_pts: could be
+ 1) a list of K coordinates (x,y)
+ or
+ 2) Kx2 or 2xK np.array
+ each row or col is a pair of coordinates (x, y)
+ or
+ 3) None
+ if None, use default reference facial points
+ @crop_size: (w, h)
+ output face image size
+ @align_type: transform type, could be one of
+ 1) 'similarity': use similarity transform
+ 2) 'cv2_affine': use the first 3 points to do affine transform,
+ by calling cv2.getAffineTransform()
+ 3) 'affine': use all points to do affine transform
+ Returns:
+ ----------
+ @face_img: output face image with size (w, h) = @crop_size
+ """
+
+ if reference_pts is None:
+ if crop_size[0] == 96 and crop_size[1] == 112:
+ reference_pts = REFERENCE_FACIAL_POINTS
+ else:
+ default_square = False
+ inner_padding_factor = 0
+ outer_padding = (0, 0)
+ output_size = crop_size
+
+ reference_pts = get_reference_facial_points(output_size, inner_padding_factor, outer_padding,
+ default_square)
+
+ ref_pts = np.float32(reference_pts)
+ ref_pts_shp = ref_pts.shape
+ if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2:
+ raise FaceWarpException('reference_pts.shape must be (K,2) or (2,K) and K>2')
+
+ if ref_pts_shp[0] == 2:
+ ref_pts = ref_pts.T
+
+ src_pts = np.float32(facial_pts)
+ src_pts_shp = src_pts.shape
+ if max(src_pts_shp) < 3 or min(src_pts_shp) != 2:
+ raise FaceWarpException('facial_pts.shape must be (K,2) or (2,K) and K>2')
+
+ if src_pts_shp[0] == 2:
+ src_pts = src_pts.T
+
+ if src_pts.shape != ref_pts.shape:
+ raise FaceWarpException('facial_pts and reference_pts must have the same shape')
+
+ if align_type == 'cv2_affine':
+ tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3])
+ elif align_type == 'affine':
+ tfm = get_affine_transform_matrix(src_pts, ref_pts)
+ else:
+ tfm = get_similarity_transform_for_cv2(src_pts, ref_pts)
+
+ face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1]))
+
+ return face_img
diff --git a/CodeFormer/facelib/detection/matlab_cp2tform.py b/CodeFormer/facelib/detection/matlab_cp2tform.py
new file mode 100644
index 0000000000000000000000000000000000000000..b2a8b54a91709c71437e15c68d3be9a9b0a20a34
--- /dev/null
+++ b/CodeFormer/facelib/detection/matlab_cp2tform.py
@@ -0,0 +1,317 @@
+import numpy as np
+from numpy.linalg import inv, lstsq
+from numpy.linalg import matrix_rank as rank
+from numpy.linalg import norm
+
+
+class MatlabCp2tormException(Exception):
+
+ def __str__(self):
+ return 'In File {}:{}'.format(__file__, super.__str__(self))
+
+
+def tformfwd(trans, uv):
+ """
+ Function:
+ ----------
+ apply affine transform 'trans' to uv
+
+ Parameters:
+ ----------
+ @trans: 3x3 np.array
+ transform matrix
+ @uv: Kx2 np.array
+ each row is a pair of coordinates (x, y)
+
+ Returns:
+ ----------
+ @xy: Kx2 np.array
+ each row is a pair of transformed coordinates (x, y)
+ """
+ uv = np.hstack((uv, np.ones((uv.shape[0], 1))))
+ xy = np.dot(uv, trans)
+ xy = xy[:, 0:-1]
+ return xy
+
+
+def tforminv(trans, uv):
+ """
+ Function:
+ ----------
+ apply the inverse of affine transform 'trans' to uv
+
+ Parameters:
+ ----------
+ @trans: 3x3 np.array
+ transform matrix
+ @uv: Kx2 np.array
+ each row is a pair of coordinates (x, y)
+
+ Returns:
+ ----------
+ @xy: Kx2 np.array
+ each row is a pair of inverse-transformed coordinates (x, y)
+ """
+ Tinv = inv(trans)
+ xy = tformfwd(Tinv, uv)
+ return xy
+
+
+def findNonreflectiveSimilarity(uv, xy, options=None):
+ options = {'K': 2}
+
+ K = options['K']
+ M = xy.shape[0]
+ x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
+ y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
+
+ tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1))))
+ tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1))))
+ X = np.vstack((tmp1, tmp2))
+
+ u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
+ v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
+ U = np.vstack((u, v))
+
+ # We know that X * r = U
+ if rank(X) >= 2 * K:
+ r, _, _, _ = lstsq(X, U, rcond=-1)
+ r = np.squeeze(r)
+ else:
+ raise Exception('cp2tform:twoUniquePointsReq')
+ sc = r[0]
+ ss = r[1]
+ tx = r[2]
+ ty = r[3]
+
+ Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]])
+ T = inv(Tinv)
+ T[:, 2] = np.array([0, 0, 1])
+
+ return T, Tinv
+
+
+def findSimilarity(uv, xy, options=None):
+ options = {'K': 2}
+
+ # uv = np.array(uv)
+ # xy = np.array(xy)
+
+ # Solve for trans1
+ trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options)
+
+ # Solve for trans2
+
+ # manually reflect the xy data across the Y-axis
+ xyR = xy
+ xyR[:, 0] = -1 * xyR[:, 0]
+
+ trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options)
+
+ # manually reflect the tform to undo the reflection done on xyR
+ TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]])
+
+ trans2 = np.dot(trans2r, TreflectY)
+
+ # Figure out if trans1 or trans2 is better
+ xy1 = tformfwd(trans1, uv)
+ norm1 = norm(xy1 - xy)
+
+ xy2 = tformfwd(trans2, uv)
+ norm2 = norm(xy2 - xy)
+
+ if norm1 <= norm2:
+ return trans1, trans1_inv
+ else:
+ trans2_inv = inv(trans2)
+ return trans2, trans2_inv
+
+
+def get_similarity_transform(src_pts, dst_pts, reflective=True):
+ """
+ Function:
+ ----------
+ Find Similarity Transform Matrix 'trans':
+ u = src_pts[:, 0]
+ v = src_pts[:, 1]
+ x = dst_pts[:, 0]
+ y = dst_pts[:, 1]
+ [x, y, 1] = [u, v, 1] * trans
+
+ Parameters:
+ ----------
+ @src_pts: Kx2 np.array
+ source points, each row is a pair of coordinates (x, y)
+ @dst_pts: Kx2 np.array
+ destination points, each row is a pair of transformed
+ coordinates (x, y)
+ @reflective: True or False
+ if True:
+ use reflective similarity transform
+ else:
+ use non-reflective similarity transform
+
+ Returns:
+ ----------
+ @trans: 3x3 np.array
+ transform matrix from uv to xy
+ trans_inv: 3x3 np.array
+ inverse of trans, transform matrix from xy to uv
+ """
+
+ if reflective:
+ trans, trans_inv = findSimilarity(src_pts, dst_pts)
+ else:
+ trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts)
+
+ return trans, trans_inv
+
+
+def cvt_tform_mat_for_cv2(trans):
+ """
+ Function:
+ ----------
+ Convert Transform Matrix 'trans' into 'cv2_trans' which could be
+ directly used by cv2.warpAffine():
+ u = src_pts[:, 0]
+ v = src_pts[:, 1]
+ x = dst_pts[:, 0]
+ y = dst_pts[:, 1]
+ [x, y].T = cv_trans * [u, v, 1].T
+
+ Parameters:
+ ----------
+ @trans: 3x3 np.array
+ transform matrix from uv to xy
+
+ Returns:
+ ----------
+ @cv2_trans: 2x3 np.array
+ transform matrix from src_pts to dst_pts, could be directly used
+ for cv2.warpAffine()
+ """
+ cv2_trans = trans[:, 0:2].T
+
+ return cv2_trans
+
+
+def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True):
+ """
+ Function:
+ ----------
+ Find Similarity Transform Matrix 'cv2_trans' which could be
+ directly used by cv2.warpAffine():
+ u = src_pts[:, 0]
+ v = src_pts[:, 1]
+ x = dst_pts[:, 0]
+ y = dst_pts[:, 1]
+ [x, y].T = cv_trans * [u, v, 1].T
+
+ Parameters:
+ ----------
+ @src_pts: Kx2 np.array
+ source points, each row is a pair of coordinates (x, y)
+ @dst_pts: Kx2 np.array
+ destination points, each row is a pair of transformed
+ coordinates (x, y)
+ reflective: True or False
+ if True:
+ use reflective similarity transform
+ else:
+ use non-reflective similarity transform
+
+ Returns:
+ ----------
+ @cv2_trans: 2x3 np.array
+ transform matrix from src_pts to dst_pts, could be directly used
+ for cv2.warpAffine()
+ """
+ trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective)
+ cv2_trans = cvt_tform_mat_for_cv2(trans)
+
+ return cv2_trans
+
+
+if __name__ == '__main__':
+ """
+ u = [0, 6, -2]
+ v = [0, 3, 5]
+ x = [-1, 0, 4]
+ y = [-1, -10, 4]
+
+ # In Matlab, run:
+ #
+ # uv = [u'; v'];
+ # xy = [x'; y'];
+ # tform_sim=cp2tform(uv,xy,'similarity');
+ #
+ # trans = tform_sim.tdata.T
+ # ans =
+ # -0.0764 -1.6190 0
+ # 1.6190 -0.0764 0
+ # -3.2156 0.0290 1.0000
+ # trans_inv = tform_sim.tdata.Tinv
+ # ans =
+ #
+ # -0.0291 0.6163 0
+ # -0.6163 -0.0291 0
+ # -0.0756 1.9826 1.0000
+ # xy_m=tformfwd(tform_sim, u,v)
+ #
+ # xy_m =
+ #
+ # -3.2156 0.0290
+ # 1.1833 -9.9143
+ # 5.0323 2.8853
+ # uv_m=tforminv(tform_sim, x,y)
+ #
+ # uv_m =
+ #
+ # 0.5698 1.3953
+ # 6.0872 2.2733
+ # -2.6570 4.3314
+ """
+ u = [0, 6, -2]
+ v = [0, 3, 5]
+ x = [-1, 0, 4]
+ y = [-1, -10, 4]
+
+ uv = np.array((u, v)).T
+ xy = np.array((x, y)).T
+
+ print('\n--->uv:')
+ print(uv)
+ print('\n--->xy:')
+ print(xy)
+
+ trans, trans_inv = get_similarity_transform(uv, xy)
+
+ print('\n--->trans matrix:')
+ print(trans)
+
+ print('\n--->trans_inv matrix:')
+ print(trans_inv)
+
+ print('\n---> apply transform to uv')
+ print('\nxy_m = uv_augmented * trans')
+ uv_aug = np.hstack((uv, np.ones((uv.shape[0], 1))))
+ xy_m = np.dot(uv_aug, trans)
+ print(xy_m)
+
+ print('\nxy_m = tformfwd(trans, uv)')
+ xy_m = tformfwd(trans, uv)
+ print(xy_m)
+
+ print('\n---> apply inverse transform to xy')
+ print('\nuv_m = xy_augmented * trans_inv')
+ xy_aug = np.hstack((xy, np.ones((xy.shape[0], 1))))
+ uv_m = np.dot(xy_aug, trans_inv)
+ print(uv_m)
+
+ print('\nuv_m = tformfwd(trans_inv, xy)')
+ uv_m = tformfwd(trans_inv, xy)
+ print(uv_m)
+
+ uv_m = tforminv(trans, xy)
+ print('\nuv_m = tforminv(trans, xy)')
+ print(uv_m)
diff --git a/CodeFormer/facelib/detection/retinaface/retinaface.py b/CodeFormer/facelib/detection/retinaface/retinaface.py
new file mode 100644
index 0000000000000000000000000000000000000000..c9c0b5a1a207778ee42bb016de3aaa2c495d8833
--- /dev/null
+++ b/CodeFormer/facelib/detection/retinaface/retinaface.py
@@ -0,0 +1,372 @@
+import cv2
+import numpy as np
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from PIL import Image
+from torchvision.models._utils import IntermediateLayerGetter as IntermediateLayerGetter
+
+from facelib.detection.align_trans import get_reference_facial_points, warp_and_crop_face
+from facelib.detection.retinaface.retinaface_net import FPN, SSH, MobileNetV1, make_bbox_head, make_class_head, make_landmark_head
+from facelib.detection.retinaface.retinaface_utils import (PriorBox, batched_decode, batched_decode_landm, decode, decode_landm,
+ py_cpu_nms)
+
+from basicsr.utils.misc import get_device
+# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+device = get_device()
+
+
+def generate_config(network_name):
+
+ cfg_mnet = {
+ 'name': 'mobilenet0.25',
+ 'min_sizes': [[16, 32], [64, 128], [256, 512]],
+ 'steps': [8, 16, 32],
+ 'variance': [0.1, 0.2],
+ 'clip': False,
+ 'loc_weight': 2.0,
+ 'gpu_train': True,
+ 'batch_size': 32,
+ 'ngpu': 1,
+ 'epoch': 250,
+ 'decay1': 190,
+ 'decay2': 220,
+ 'image_size': 640,
+ 'return_layers': {
+ 'stage1': 1,
+ 'stage2': 2,
+ 'stage3': 3
+ },
+ 'in_channel': 32,
+ 'out_channel': 64
+ }
+
+ cfg_re50 = {
+ 'name': 'Resnet50',
+ 'min_sizes': [[16, 32], [64, 128], [256, 512]],
+ 'steps': [8, 16, 32],
+ 'variance': [0.1, 0.2],
+ 'clip': False,
+ 'loc_weight': 2.0,
+ 'gpu_train': True,
+ 'batch_size': 24,
+ 'ngpu': 4,
+ 'epoch': 100,
+ 'decay1': 70,
+ 'decay2': 90,
+ 'image_size': 840,
+ 'return_layers': {
+ 'layer2': 1,
+ 'layer3': 2,
+ 'layer4': 3
+ },
+ 'in_channel': 256,
+ 'out_channel': 256
+ }
+
+ if network_name == 'mobile0.25':
+ return cfg_mnet
+ elif network_name == 'resnet50':
+ return cfg_re50
+ else:
+ raise NotImplementedError(f'network_name={network_name}')
+
+
+class RetinaFace(nn.Module):
+
+ def __init__(self, network_name='resnet50', half=False, phase='test'):
+ super(RetinaFace, self).__init__()
+ self.half_inference = half
+ cfg = generate_config(network_name)
+ self.backbone = cfg['name']
+
+ self.model_name = f'retinaface_{network_name}'
+ self.cfg = cfg
+ self.phase = phase
+ self.target_size, self.max_size = 1600, 2150
+ self.resize, self.scale, self.scale1 = 1., None, None
+ self.mean_tensor = torch.tensor([[[[104.]], [[117.]], [[123.]]]]).to(device)
+ self.reference = get_reference_facial_points(default_square=True)
+ # Build network.
+ backbone = None
+ if cfg['name'] == 'mobilenet0.25':
+ backbone = MobileNetV1()
+ self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
+ elif cfg['name'] == 'Resnet50':
+ import torchvision.models as models
+ backbone = models.resnet50(pretrained=False)
+ self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
+
+ in_channels_stage2 = cfg['in_channel']
+ in_channels_list = [
+ in_channels_stage2 * 2,
+ in_channels_stage2 * 4,
+ in_channels_stage2 * 8,
+ ]
+
+ out_channels = cfg['out_channel']
+ self.fpn = FPN(in_channels_list, out_channels)
+ self.ssh1 = SSH(out_channels, out_channels)
+ self.ssh2 = SSH(out_channels, out_channels)
+ self.ssh3 = SSH(out_channels, out_channels)
+
+ self.ClassHead = make_class_head(fpn_num=3, inchannels=cfg['out_channel'])
+ self.BboxHead = make_bbox_head(fpn_num=3, inchannels=cfg['out_channel'])
+ self.LandmarkHead = make_landmark_head(fpn_num=3, inchannels=cfg['out_channel'])
+
+ self.to(device)
+ self.eval()
+ if self.half_inference:
+ self.half()
+
+ def forward(self, inputs):
+ out = self.body(inputs)
+
+ if self.backbone == 'mobilenet0.25' or self.backbone == 'Resnet50':
+ out = list(out.values())
+ # FPN
+ fpn = self.fpn(out)
+
+ # SSH
+ feature1 = self.ssh1(fpn[0])
+ feature2 = self.ssh2(fpn[1])
+ feature3 = self.ssh3(fpn[2])
+ features = [feature1, feature2, feature3]
+
+ bbox_regressions = torch.cat([self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1)
+ classifications = torch.cat([self.ClassHead[i](feature) for i, feature in enumerate(features)], dim=1)
+ tmp = [self.LandmarkHead[i](feature) for i, feature in enumerate(features)]
+ ldm_regressions = (torch.cat(tmp, dim=1))
+
+ if self.phase == 'train':
+ output = (bbox_regressions, classifications, ldm_regressions)
+ else:
+ output = (bbox_regressions, F.softmax(classifications, dim=-1), ldm_regressions)
+ return output
+
+ def __detect_faces(self, inputs):
+ # get scale
+ height, width = inputs.shape[2:]
+ self.scale = torch.tensor([width, height, width, height], dtype=torch.float32).to(device)
+ tmp = [width, height, width, height, width, height, width, height, width, height]
+ self.scale1 = torch.tensor(tmp, dtype=torch.float32).to(device)
+
+ # forawrd
+ inputs = inputs.to(device)
+ if self.half_inference:
+ inputs = inputs.half()
+ loc, conf, landmarks = self(inputs)
+
+ # get priorbox
+ priorbox = PriorBox(self.cfg, image_size=inputs.shape[2:])
+ priors = priorbox.forward().to(device)
+
+ return loc, conf, landmarks, priors
+
+ # single image detection
+ def transform(self, image, use_origin_size):
+ # convert to opencv format
+ if isinstance(image, Image.Image):
+ image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
+ image = image.astype(np.float32)
+
+ # testing scale
+ im_size_min = np.min(image.shape[0:2])
+ im_size_max = np.max(image.shape[0:2])
+ resize = float(self.target_size) / float(im_size_min)
+
+ # prevent bigger axis from being more than max_size
+ if np.round(resize * im_size_max) > self.max_size:
+ resize = float(self.max_size) / float(im_size_max)
+ resize = 1 if use_origin_size else resize
+
+ # resize
+ if resize != 1:
+ image = cv2.resize(image, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
+
+ # convert to torch.tensor format
+ # image -= (104, 117, 123)
+ image = image.transpose(2, 0, 1)
+ image = torch.from_numpy(image).unsqueeze(0)
+
+ return image, resize
+
+ def detect_faces(
+ self,
+ image,
+ conf_threshold=0.8,
+ nms_threshold=0.4,
+ use_origin_size=True,
+ ):
+ """
+ Params:
+ imgs: BGR image
+ """
+ image, self.resize = self.transform(image, use_origin_size)
+ image = image.to(device)
+ if self.half_inference:
+ image = image.half()
+ image = image - self.mean_tensor
+
+ loc, conf, landmarks, priors = self.__detect_faces(image)
+
+ boxes = decode(loc.data.squeeze(0), priors.data, self.cfg['variance'])
+ boxes = boxes * self.scale / self.resize
+ boxes = boxes.cpu().numpy()
+
+ scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
+
+ landmarks = decode_landm(landmarks.squeeze(0), priors, self.cfg['variance'])
+ landmarks = landmarks * self.scale1 / self.resize
+ landmarks = landmarks.cpu().numpy()
+
+ # ignore low scores
+ inds = np.where(scores > conf_threshold)[0]
+ boxes, landmarks, scores = boxes[inds], landmarks[inds], scores[inds]
+
+ # sort
+ order = scores.argsort()[::-1]
+ boxes, landmarks, scores = boxes[order], landmarks[order], scores[order]
+
+ # do NMS
+ bounding_boxes = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
+ keep = py_cpu_nms(bounding_boxes, nms_threshold)
+ bounding_boxes, landmarks = bounding_boxes[keep, :], landmarks[keep]
+ # self.t['forward_pass'].toc()
+ # print(self.t['forward_pass'].average_time)
+ # import sys
+ # sys.stdout.flush()
+ return np.concatenate((bounding_boxes, landmarks), axis=1)
+
+ def __align_multi(self, image, boxes, landmarks, limit=None):
+
+ if len(boxes) < 1:
+ return [], []
+
+ if limit:
+ boxes = boxes[:limit]
+ landmarks = landmarks[:limit]
+
+ faces = []
+ for landmark in landmarks:
+ facial5points = [[landmark[2 * j], landmark[2 * j + 1]] for j in range(5)]
+
+ warped_face = warp_and_crop_face(np.array(image), facial5points, self.reference, crop_size=(112, 112))
+ faces.append(warped_face)
+
+ return np.concatenate((boxes, landmarks), axis=1), faces
+
+ def align_multi(self, img, conf_threshold=0.8, limit=None):
+
+ rlt = self.detect_faces(img, conf_threshold=conf_threshold)
+ boxes, landmarks = rlt[:, 0:5], rlt[:, 5:]
+
+ return self.__align_multi(img, boxes, landmarks, limit)
+
+ # batched detection
+ def batched_transform(self, frames, use_origin_size):
+ """
+ Arguments:
+ frames: a list of PIL.Image, or torch.Tensor(shape=[n, h, w, c],
+ type=np.float32, BGR format).
+ use_origin_size: whether to use origin size.
+ """
+ from_PIL = True if isinstance(frames[0], Image.Image) else False
+
+ # convert to opencv format
+ if from_PIL:
+ frames = [cv2.cvtColor(np.asarray(frame), cv2.COLOR_RGB2BGR) for frame in frames]
+ frames = np.asarray(frames, dtype=np.float32)
+
+ # testing scale
+ im_size_min = np.min(frames[0].shape[0:2])
+ im_size_max = np.max(frames[0].shape[0:2])
+ resize = float(self.target_size) / float(im_size_min)
+
+ # prevent bigger axis from being more than max_size
+ if np.round(resize * im_size_max) > self.max_size:
+ resize = float(self.max_size) / float(im_size_max)
+ resize = 1 if use_origin_size else resize
+
+ # resize
+ if resize != 1:
+ if not from_PIL:
+ frames = F.interpolate(frames, scale_factor=resize)
+ else:
+ frames = [
+ cv2.resize(frame, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
+ for frame in frames
+ ]
+
+ # convert to torch.tensor format
+ if not from_PIL:
+ frames = frames.transpose(1, 2).transpose(1, 3).contiguous()
+ else:
+ frames = frames.transpose((0, 3, 1, 2))
+ frames = torch.from_numpy(frames)
+
+ return frames, resize
+
+ def batched_detect_faces(self, frames, conf_threshold=0.8, nms_threshold=0.4, use_origin_size=True):
+ """
+ Arguments:
+ frames: a list of PIL.Image, or np.array(shape=[n, h, w, c],
+ type=np.uint8, BGR format).
+ conf_threshold: confidence threshold.
+ nms_threshold: nms threshold.
+ use_origin_size: whether to use origin size.
+ Returns:
+ final_bounding_boxes: list of np.array ([n_boxes, 5],
+ type=np.float32).
+ final_landmarks: list of np.array ([n_boxes, 10], type=np.float32).
+ """
+ # self.t['forward_pass'].tic()
+ frames, self.resize = self.batched_transform(frames, use_origin_size)
+ frames = frames.to(device)
+ frames = frames - self.mean_tensor
+
+ b_loc, b_conf, b_landmarks, priors = self.__detect_faces(frames)
+
+ final_bounding_boxes, final_landmarks = [], []
+
+ # decode
+ priors = priors.unsqueeze(0)
+ b_loc = batched_decode(b_loc, priors, self.cfg['variance']) * self.scale / self.resize
+ b_landmarks = batched_decode_landm(b_landmarks, priors, self.cfg['variance']) * self.scale1 / self.resize
+ b_conf = b_conf[:, :, 1]
+
+ # index for selection
+ b_indice = b_conf > conf_threshold
+
+ # concat
+ b_loc_and_conf = torch.cat((b_loc, b_conf.unsqueeze(-1)), dim=2).float()
+
+ for pred, landm, inds in zip(b_loc_and_conf, b_landmarks, b_indice):
+
+ # ignore low scores
+ pred, landm = pred[inds, :], landm[inds, :]
+ if pred.shape[0] == 0:
+ final_bounding_boxes.append(np.array([], dtype=np.float32))
+ final_landmarks.append(np.array([], dtype=np.float32))
+ continue
+
+ # sort
+ # order = score.argsort(descending=True)
+ # box, landm, score = box[order], landm[order], score[order]
+
+ # to CPU
+ bounding_boxes, landm = pred.cpu().numpy(), landm.cpu().numpy()
+
+ # NMS
+ keep = py_cpu_nms(bounding_boxes, nms_threshold)
+ bounding_boxes, landmarks = bounding_boxes[keep, :], landm[keep]
+
+ # append
+ final_bounding_boxes.append(bounding_boxes)
+ final_landmarks.append(landmarks)
+ # self.t['forward_pass'].toc(average=True)
+ # self.batch_time += self.t['forward_pass'].diff
+ # self.total_frame += len(frames)
+ # print(self.batch_time / self.total_frame)
+
+ return final_bounding_boxes, final_landmarks
diff --git a/CodeFormer/facelib/detection/retinaface/retinaface_net.py b/CodeFormer/facelib/detection/retinaface/retinaface_net.py
new file mode 100644
index 0000000000000000000000000000000000000000..ab6aa82d3e9055a838f1f9076b12f05fdfc154d0
--- /dev/null
+++ b/CodeFormer/facelib/detection/retinaface/retinaface_net.py
@@ -0,0 +1,196 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+def conv_bn(inp, oup, stride=1, leaky=0):
+ return nn.Sequential(
+ nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup),
+ nn.LeakyReLU(negative_slope=leaky, inplace=True))
+
+
+def conv_bn_no_relu(inp, oup, stride):
+ return nn.Sequential(
+ nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
+ nn.BatchNorm2d(oup),
+ )
+
+
+def conv_bn1X1(inp, oup, stride, leaky=0):
+ return nn.Sequential(
+ nn.Conv2d(inp, oup, 1, stride, padding=0, bias=False), nn.BatchNorm2d(oup),
+ nn.LeakyReLU(negative_slope=leaky, inplace=True))
+
+
+def conv_dw(inp, oup, stride, leaky=0.1):
+ return nn.Sequential(
+ nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
+ nn.BatchNorm2d(inp),
+ nn.LeakyReLU(negative_slope=leaky, inplace=True),
+ nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
+ nn.BatchNorm2d(oup),
+ nn.LeakyReLU(negative_slope=leaky, inplace=True),
+ )
+
+
+class SSH(nn.Module):
+
+ def __init__(self, in_channel, out_channel):
+ super(SSH, self).__init__()
+ assert out_channel % 4 == 0
+ leaky = 0
+ if (out_channel <= 64):
+ leaky = 0.1
+ self.conv3X3 = conv_bn_no_relu(in_channel, out_channel // 2, stride=1)
+
+ self.conv5X5_1 = conv_bn(in_channel, out_channel // 4, stride=1, leaky=leaky)
+ self.conv5X5_2 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
+
+ self.conv7X7_2 = conv_bn(out_channel // 4, out_channel // 4, stride=1, leaky=leaky)
+ self.conv7x7_3 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
+
+ def forward(self, input):
+ conv3X3 = self.conv3X3(input)
+
+ conv5X5_1 = self.conv5X5_1(input)
+ conv5X5 = self.conv5X5_2(conv5X5_1)
+
+ conv7X7_2 = self.conv7X7_2(conv5X5_1)
+ conv7X7 = self.conv7x7_3(conv7X7_2)
+
+ out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1)
+ out = F.relu(out)
+ return out
+
+
+class FPN(nn.Module):
+
+ def __init__(self, in_channels_list, out_channels):
+ super(FPN, self).__init__()
+ leaky = 0
+ if (out_channels <= 64):
+ leaky = 0.1
+ self.output1 = conv_bn1X1(in_channels_list[0], out_channels, stride=1, leaky=leaky)
+ self.output2 = conv_bn1X1(in_channels_list[1], out_channels, stride=1, leaky=leaky)
+ self.output3 = conv_bn1X1(in_channels_list[2], out_channels, stride=1, leaky=leaky)
+
+ self.merge1 = conv_bn(out_channels, out_channels, leaky=leaky)
+ self.merge2 = conv_bn(out_channels, out_channels, leaky=leaky)
+
+ def forward(self, input):
+ # names = list(input.keys())
+ # input = list(input.values())
+
+ output1 = self.output1(input[0])
+ output2 = self.output2(input[1])
+ output3 = self.output3(input[2])
+
+ up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode='nearest')
+ output2 = output2 + up3
+ output2 = self.merge2(output2)
+
+ up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode='nearest')
+ output1 = output1 + up2
+ output1 = self.merge1(output1)
+
+ out = [output1, output2, output3]
+ return out
+
+
+class MobileNetV1(nn.Module):
+
+ def __init__(self):
+ super(MobileNetV1, self).__init__()
+ self.stage1 = nn.Sequential(
+ conv_bn(3, 8, 2, leaky=0.1), # 3
+ conv_dw(8, 16, 1), # 7
+ conv_dw(16, 32, 2), # 11
+ conv_dw(32, 32, 1), # 19
+ conv_dw(32, 64, 2), # 27
+ conv_dw(64, 64, 1), # 43
+ )
+ self.stage2 = nn.Sequential(
+ conv_dw(64, 128, 2), # 43 + 16 = 59
+ conv_dw(128, 128, 1), # 59 + 32 = 91
+ conv_dw(128, 128, 1), # 91 + 32 = 123
+ conv_dw(128, 128, 1), # 123 + 32 = 155
+ conv_dw(128, 128, 1), # 155 + 32 = 187
+ conv_dw(128, 128, 1), # 187 + 32 = 219
+ )
+ self.stage3 = nn.Sequential(
+ conv_dw(128, 256, 2), # 219 +3 2 = 241
+ conv_dw(256, 256, 1), # 241 + 64 = 301
+ )
+ self.avg = nn.AdaptiveAvgPool2d((1, 1))
+ self.fc = nn.Linear(256, 1000)
+
+ def forward(self, x):
+ x = self.stage1(x)
+ x = self.stage2(x)
+ x = self.stage3(x)
+ x = self.avg(x)
+ # x = self.model(x)
+ x = x.view(-1, 256)
+ x = self.fc(x)
+ return x
+
+
+class ClassHead(nn.Module):
+
+ def __init__(self, inchannels=512, num_anchors=3):
+ super(ClassHead, self).__init__()
+ self.num_anchors = num_anchors
+ self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2, kernel_size=(1, 1), stride=1, padding=0)
+
+ def forward(self, x):
+ out = self.conv1x1(x)
+ out = out.permute(0, 2, 3, 1).contiguous()
+
+ return out.view(out.shape[0], -1, 2)
+
+
+class BboxHead(nn.Module):
+
+ def __init__(self, inchannels=512, num_anchors=3):
+ super(BboxHead, self).__init__()
+ self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=(1, 1), stride=1, padding=0)
+
+ def forward(self, x):
+ out = self.conv1x1(x)
+ out = out.permute(0, 2, 3, 1).contiguous()
+
+ return out.view(out.shape[0], -1, 4)
+
+
+class LandmarkHead(nn.Module):
+
+ def __init__(self, inchannels=512, num_anchors=3):
+ super(LandmarkHead, self).__init__()
+ self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size=(1, 1), stride=1, padding=0)
+
+ def forward(self, x):
+ out = self.conv1x1(x)
+ out = out.permute(0, 2, 3, 1).contiguous()
+
+ return out.view(out.shape[0], -1, 10)
+
+
+def make_class_head(fpn_num=3, inchannels=64, anchor_num=2):
+ classhead = nn.ModuleList()
+ for i in range(fpn_num):
+ classhead.append(ClassHead(inchannels, anchor_num))
+ return classhead
+
+
+def make_bbox_head(fpn_num=3, inchannels=64, anchor_num=2):
+ bboxhead = nn.ModuleList()
+ for i in range(fpn_num):
+ bboxhead.append(BboxHead(inchannels, anchor_num))
+ return bboxhead
+
+
+def make_landmark_head(fpn_num=3, inchannels=64, anchor_num=2):
+ landmarkhead = nn.ModuleList()
+ for i in range(fpn_num):
+ landmarkhead.append(LandmarkHead(inchannels, anchor_num))
+ return landmarkhead
diff --git a/CodeFormer/facelib/detection/retinaface/retinaface_utils.py b/CodeFormer/facelib/detection/retinaface/retinaface_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..8c357757741c6d9bd7ce4d8ce740fefd51850fbf
--- /dev/null
+++ b/CodeFormer/facelib/detection/retinaface/retinaface_utils.py
@@ -0,0 +1,421 @@
+import numpy as np
+import torch
+import torchvision
+from itertools import product as product
+from math import ceil
+
+
+class PriorBox(object):
+
+ def __init__(self, cfg, image_size=None, phase='train'):
+ super(PriorBox, self).__init__()
+ self.min_sizes = cfg['min_sizes']
+ self.steps = cfg['steps']
+ self.clip = cfg['clip']
+ self.image_size = image_size
+ self.feature_maps = [[ceil(self.image_size[0] / step), ceil(self.image_size[1] / step)] for step in self.steps]
+ self.name = 's'
+
+ def forward(self):
+ anchors = []
+ for k, f in enumerate(self.feature_maps):
+ min_sizes = self.min_sizes[k]
+ for i, j in product(range(f[0]), range(f[1])):
+ for min_size in min_sizes:
+ s_kx = min_size / self.image_size[1]
+ s_ky = min_size / self.image_size[0]
+ dense_cx = [x * self.steps[k] / self.image_size[1] for x in [j + 0.5]]
+ dense_cy = [y * self.steps[k] / self.image_size[0] for y in [i + 0.5]]
+ for cy, cx in product(dense_cy, dense_cx):
+ anchors += [cx, cy, s_kx, s_ky]
+
+ # back to torch land
+ output = torch.Tensor(anchors).view(-1, 4)
+ if self.clip:
+ output.clamp_(max=1, min=0)
+ return output
+
+
+def py_cpu_nms(dets, thresh):
+ """Pure Python NMS baseline."""
+ keep = torchvision.ops.nms(
+ boxes=torch.Tensor(dets[:, :4]),
+ scores=torch.Tensor(dets[:, 4]),
+ iou_threshold=thresh,
+ )
+
+ return list(keep)
+
+
+def point_form(boxes):
+ """ Convert prior_boxes to (xmin, ymin, xmax, ymax)
+ representation for comparison to point form ground truth data.
+ Args:
+ boxes: (tensor) center-size default boxes from priorbox layers.
+ Return:
+ boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
+ """
+ return torch.cat(
+ (
+ boxes[:, :2] - boxes[:, 2:] / 2, # xmin, ymin
+ boxes[:, :2] + boxes[:, 2:] / 2),
+ 1) # xmax, ymax
+
+
+def center_size(boxes):
+ """ Convert prior_boxes to (cx, cy, w, h)
+ representation for comparison to center-size form ground truth data.
+ Args:
+ boxes: (tensor) point_form boxes
+ Return:
+ boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
+ """
+ return torch.cat(
+ (boxes[:, 2:] + boxes[:, :2]) / 2, # cx, cy
+ boxes[:, 2:] - boxes[:, :2],
+ 1) # w, h
+
+
+def intersect(box_a, box_b):
+ """ We resize both tensors to [A,B,2] without new malloc:
+ [A,2] -> [A,1,2] -> [A,B,2]
+ [B,2] -> [1,B,2] -> [A,B,2]
+ Then we compute the area of intersect between box_a and box_b.
+ Args:
+ box_a: (tensor) bounding boxes, Shape: [A,4].
+ box_b: (tensor) bounding boxes, Shape: [B,4].
+ Return:
+ (tensor) intersection area, Shape: [A,B].
+ """
+ A = box_a.size(0)
+ B = box_b.size(0)
+ max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2), box_b[:, 2:].unsqueeze(0).expand(A, B, 2))
+ min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2), box_b[:, :2].unsqueeze(0).expand(A, B, 2))
+ inter = torch.clamp((max_xy - min_xy), min=0)
+ return inter[:, :, 0] * inter[:, :, 1]
+
+
+def jaccard(box_a, box_b):
+ """Compute the jaccard overlap of two sets of boxes. The jaccard overlap
+ is simply the intersection over union of two boxes. Here we operate on
+ ground truth boxes and default boxes.
+ E.g.:
+ A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
+ Args:
+ box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]
+ box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4]
+ Return:
+ jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)]
+ """
+ inter = intersect(box_a, box_b)
+ area_a = ((box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B]
+ area_b = ((box_b[:, 2] - box_b[:, 0]) * (box_b[:, 3] - box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B]
+ union = area_a + area_b - inter
+ return inter / union # [A,B]
+
+
+def matrix_iou(a, b):
+ """
+ return iou of a and b, numpy version for data augenmentation
+ """
+ lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
+ rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
+
+ area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
+ area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
+ area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
+ return area_i / (area_a[:, np.newaxis] + area_b - area_i)
+
+
+def matrix_iof(a, b):
+ """
+ return iof of a and b, numpy version for data augenmentation
+ """
+ lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
+ rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
+
+ area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
+ area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
+ return area_i / np.maximum(area_a[:, np.newaxis], 1)
+
+
+def match(threshold, truths, priors, variances, labels, landms, loc_t, conf_t, landm_t, idx):
+ """Match each prior box with the ground truth box of the highest jaccard
+ overlap, encode the bounding boxes, then return the matched indices
+ corresponding to both confidence and location preds.
+ Args:
+ threshold: (float) The overlap threshold used when matching boxes.
+ truths: (tensor) Ground truth boxes, Shape: [num_obj, 4].
+ priors: (tensor) Prior boxes from priorbox layers, Shape: [n_priors,4].
+ variances: (tensor) Variances corresponding to each prior coord,
+ Shape: [num_priors, 4].
+ labels: (tensor) All the class labels for the image, Shape: [num_obj].
+ landms: (tensor) Ground truth landms, Shape [num_obj, 10].
+ loc_t: (tensor) Tensor to be filled w/ encoded location targets.
+ conf_t: (tensor) Tensor to be filled w/ matched indices for conf preds.
+ landm_t: (tensor) Tensor to be filled w/ encoded landm targets.
+ idx: (int) current batch index
+ Return:
+ The matched indices corresponding to 1)location 2)confidence
+ 3)landm preds.
+ """
+ # jaccard index
+ overlaps = jaccard(truths, point_form(priors))
+ # (Bipartite Matching)
+ # [1,num_objects] best prior for each ground truth
+ best_prior_overlap, best_prior_idx = overlaps.max(1, keepdim=True)
+
+ # ignore hard gt
+ valid_gt_idx = best_prior_overlap[:, 0] >= 0.2
+ best_prior_idx_filter = best_prior_idx[valid_gt_idx, :]
+ if best_prior_idx_filter.shape[0] <= 0:
+ loc_t[idx] = 0
+ conf_t[idx] = 0
+ return
+
+ # [1,num_priors] best ground truth for each prior
+ best_truth_overlap, best_truth_idx = overlaps.max(0, keepdim=True)
+ best_truth_idx.squeeze_(0)
+ best_truth_overlap.squeeze_(0)
+ best_prior_idx.squeeze_(1)
+ best_prior_idx_filter.squeeze_(1)
+ best_prior_overlap.squeeze_(1)
+ best_truth_overlap.index_fill_(0, best_prior_idx_filter, 2) # ensure best prior
+ # TODO refactor: index best_prior_idx with long tensor
+ # ensure every gt matches with its prior of max overlap
+ for j in range(best_prior_idx.size(0)): # 判别此anchor是预测哪一个boxes
+ best_truth_idx[best_prior_idx[j]] = j
+ matches = truths[best_truth_idx] # Shape: [num_priors,4] 此处为每一个anchor对应的bbox取出来
+ conf = labels[best_truth_idx] # Shape: [num_priors] 此处为每一个anchor对应的label取出来
+ conf[best_truth_overlap < threshold] = 0 # label as background overlap<0.35的全部作为负样本
+ loc = encode(matches, priors, variances)
+
+ matches_landm = landms[best_truth_idx]
+ landm = encode_landm(matches_landm, priors, variances)
+ loc_t[idx] = loc # [num_priors,4] encoded offsets to learn
+ conf_t[idx] = conf # [num_priors] top class label for each prior
+ landm_t[idx] = landm
+
+
+def encode(matched, priors, variances):
+ """Encode the variances from the priorbox layers into the ground truth boxes
+ we have matched (based on jaccard overlap) with the prior boxes.
+ Args:
+ matched: (tensor) Coords of ground truth for each prior in point-form
+ Shape: [num_priors, 4].
+ priors: (tensor) Prior boxes in center-offset form
+ Shape: [num_priors,4].
+ variances: (list[float]) Variances of priorboxes
+ Return:
+ encoded boxes (tensor), Shape: [num_priors, 4]
+ """
+
+ # dist b/t match center and prior's center
+ g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2]
+ # encode variance
+ g_cxcy /= (variances[0] * priors[:, 2:])
+ # match wh / prior wh
+ g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
+ g_wh = torch.log(g_wh) / variances[1]
+ # return target for smooth_l1_loss
+ return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4]
+
+
+def encode_landm(matched, priors, variances):
+ """Encode the variances from the priorbox layers into the ground truth boxes
+ we have matched (based on jaccard overlap) with the prior boxes.
+ Args:
+ matched: (tensor) Coords of ground truth for each prior in point-form
+ Shape: [num_priors, 10].
+ priors: (tensor) Prior boxes in center-offset form
+ Shape: [num_priors,4].
+ variances: (list[float]) Variances of priorboxes
+ Return:
+ encoded landm (tensor), Shape: [num_priors, 10]
+ """
+
+ # dist b/t match center and prior's center
+ matched = torch.reshape(matched, (matched.size(0), 5, 2))
+ priors_cx = priors[:, 0].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
+ priors_cy = priors[:, 1].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
+ priors_w = priors[:, 2].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
+ priors_h = priors[:, 3].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
+ priors = torch.cat([priors_cx, priors_cy, priors_w, priors_h], dim=2)
+ g_cxcy = matched[:, :, :2] - priors[:, :, :2]
+ # encode variance
+ g_cxcy /= (variances[0] * priors[:, :, 2:])
+ # g_cxcy /= priors[:, :, 2:]
+ g_cxcy = g_cxcy.reshape(g_cxcy.size(0), -1)
+ # return target for smooth_l1_loss
+ return g_cxcy
+
+
+# Adapted from https://github.com/Hakuyume/chainer-ssd
+def decode(loc, priors, variances):
+ """Decode locations from predictions using priors to undo
+ the encoding we did for offset regression at train time.
+ Args:
+ loc (tensor): location predictions for loc layers,
+ Shape: [num_priors,4]
+ priors (tensor): Prior boxes in center-offset form.
+ Shape: [num_priors,4].
+ variances: (list[float]) Variances of priorboxes
+ Return:
+ decoded bounding box predictions
+ """
+
+ boxes = torch.cat((priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
+ priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
+ boxes[:, :2] -= boxes[:, 2:] / 2
+ boxes[:, 2:] += boxes[:, :2]
+ return boxes
+
+
+def decode_landm(pre, priors, variances):
+ """Decode landm from predictions using priors to undo
+ the encoding we did for offset regression at train time.
+ Args:
+ pre (tensor): landm predictions for loc layers,
+ Shape: [num_priors,10]
+ priors (tensor): Prior boxes in center-offset form.
+ Shape: [num_priors,4].
+ variances: (list[float]) Variances of priorboxes
+ Return:
+ decoded landm predictions
+ """
+ tmp = (
+ priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:],
+ priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:],
+ priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:],
+ priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:],
+ priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:],
+ )
+ landms = torch.cat(tmp, dim=1)
+ return landms
+
+
+def batched_decode(b_loc, priors, variances):
+ """Decode locations from predictions using priors to undo
+ the encoding we did for offset regression at train time.
+ Args:
+ b_loc (tensor): location predictions for loc layers,
+ Shape: [num_batches,num_priors,4]
+ priors (tensor): Prior boxes in center-offset form.
+ Shape: [1,num_priors,4].
+ variances: (list[float]) Variances of priorboxes
+ Return:
+ decoded bounding box predictions
+ """
+ boxes = (
+ priors[:, :, :2] + b_loc[:, :, :2] * variances[0] * priors[:, :, 2:],
+ priors[:, :, 2:] * torch.exp(b_loc[:, :, 2:] * variances[1]),
+ )
+ boxes = torch.cat(boxes, dim=2)
+
+ boxes[:, :, :2] -= boxes[:, :, 2:] / 2
+ boxes[:, :, 2:] += boxes[:, :, :2]
+ return boxes
+
+
+def batched_decode_landm(pre, priors, variances):
+ """Decode landm from predictions using priors to undo
+ the encoding we did for offset regression at train time.
+ Args:
+ pre (tensor): landm predictions for loc layers,
+ Shape: [num_batches,num_priors,10]
+ priors (tensor): Prior boxes in center-offset form.
+ Shape: [1,num_priors,4].
+ variances: (list[float]) Variances of priorboxes
+ Return:
+ decoded landm predictions
+ """
+ landms = (
+ priors[:, :, :2] + pre[:, :, :2] * variances[0] * priors[:, :, 2:],
+ priors[:, :, :2] + pre[:, :, 2:4] * variances[0] * priors[:, :, 2:],
+ priors[:, :, :2] + pre[:, :, 4:6] * variances[0] * priors[:, :, 2:],
+ priors[:, :, :2] + pre[:, :, 6:8] * variances[0] * priors[:, :, 2:],
+ priors[:, :, :2] + pre[:, :, 8:10] * variances[0] * priors[:, :, 2:],
+ )
+ landms = torch.cat(landms, dim=2)
+ return landms
+
+
+def log_sum_exp(x):
+ """Utility function for computing log_sum_exp while determining
+ This will be used to determine unaveraged confidence loss across
+ all examples in a batch.
+ Args:
+ x (Variable(tensor)): conf_preds from conf layers
+ """
+ x_max = x.data.max()
+ return torch.log(torch.sum(torch.exp(x - x_max), 1, keepdim=True)) + x_max
+
+
+# Original author: Francisco Massa:
+# https://github.com/fmassa/object-detection.torch
+# Ported to PyTorch by Max deGroot (02/01/2017)
+def nms(boxes, scores, overlap=0.5, top_k=200):
+ """Apply non-maximum suppression at test time to avoid detecting too many
+ overlapping bounding boxes for a given object.
+ Args:
+ boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
+ scores: (tensor) The class predscores for the img, Shape:[num_priors].
+ overlap: (float) The overlap thresh for suppressing unnecessary boxes.
+ top_k: (int) The Maximum number of box preds to consider.
+ Return:
+ The indices of the kept boxes with respect to num_priors.
+ """
+
+ keep = torch.Tensor(scores.size(0)).fill_(0).long()
+ if boxes.numel() == 0:
+ return keep
+ x1 = boxes[:, 0]
+ y1 = boxes[:, 1]
+ x2 = boxes[:, 2]
+ y2 = boxes[:, 3]
+ area = torch.mul(x2 - x1, y2 - y1)
+ v, idx = scores.sort(0) # sort in ascending order
+ # I = I[v >= 0.01]
+ idx = idx[-top_k:] # indices of the top-k largest vals
+ xx1 = boxes.new()
+ yy1 = boxes.new()
+ xx2 = boxes.new()
+ yy2 = boxes.new()
+ w = boxes.new()
+ h = boxes.new()
+
+ # keep = torch.Tensor()
+ count = 0
+ while idx.numel() > 0:
+ i = idx[-1] # index of current largest val
+ # keep.append(i)
+ keep[count] = i
+ count += 1
+ if idx.size(0) == 1:
+ break
+ idx = idx[:-1] # remove kept element from view
+ # load bboxes of next highest vals
+ torch.index_select(x1, 0, idx, out=xx1)
+ torch.index_select(y1, 0, idx, out=yy1)
+ torch.index_select(x2, 0, idx, out=xx2)
+ torch.index_select(y2, 0, idx, out=yy2)
+ # store element-wise max with next highest score
+ xx1 = torch.clamp(xx1, min=x1[i])
+ yy1 = torch.clamp(yy1, min=y1[i])
+ xx2 = torch.clamp(xx2, max=x2[i])
+ yy2 = torch.clamp(yy2, max=y2[i])
+ w.resize_as_(xx2)
+ h.resize_as_(yy2)
+ w = xx2 - xx1
+ h = yy2 - yy1
+ # check sizes of xx1 and xx2.. after each iteration
+ w = torch.clamp(w, min=0.0)
+ h = torch.clamp(h, min=0.0)
+ inter = w * h
+ # IoU = i / (area(a) + area(b) - i)
+ rem_areas = torch.index_select(area, 0, idx) # load remaining areas)
+ union = (rem_areas - inter) + area[i]
+ IoU = inter / union # store result in iou
+ # keep only elements with an IoU <= overlap
+ idx = idx[IoU.le(overlap)]
+ return keep, count
diff --git a/CodeFormer/facelib/detection/yolov5face/__init__.py b/CodeFormer/facelib/detection/yolov5face/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/CodeFormer/facelib/detection/yolov5face/face_detector.py b/CodeFormer/facelib/detection/yolov5face/face_detector.py
new file mode 100644
index 0000000000000000000000000000000000000000..1b27e970e34f5dd1a945928b4e8eda171af36dab
--- /dev/null
+++ b/CodeFormer/facelib/detection/yolov5face/face_detector.py
@@ -0,0 +1,141 @@
+import cv2
+import copy
+import re
+import torch
+import numpy as np
+
+from pathlib import Path
+from facelib.detection.yolov5face.models.yolo import Model
+from facelib.detection.yolov5face.utils.datasets import letterbox
+from facelib.detection.yolov5face.utils.general import (
+ check_img_size,
+ non_max_suppression_face,
+ scale_coords,
+ scale_coords_landmarks,
+)
+
+# IS_HIGH_VERSION = tuple(map(int, torch.__version__.split('+')[0].split('.')[:2])) >= (1, 9)
+IS_HIGH_VERSION = [int(m) for m in list(re.findall(r"^([0-9]+)\.([0-9]+)\.([0-9]+)([^0-9][a-zA-Z0-9]*)?(\+git.*)?$",\
+ torch.__version__)[0][:3])] >= [1, 9, 0]
+
+
+def isListempty(inList):
+ if isinstance(inList, list): # Is a list
+ return all(map(isListempty, inList))
+ return False # Not a list
+
+class YoloDetector:
+ def __init__(
+ self,
+ config_name,
+ min_face=10,
+ target_size=None,
+ device='cuda',
+ ):
+ """
+ config_name: name of .yaml config with network configuration from models/ folder.
+ min_face : minimal face size in pixels.
+ target_size : target size of smaller image axis (choose lower for faster work). e.g. 480, 720, 1080.
+ None for original resolution.
+ """
+ self._class_path = Path(__file__).parent.absolute()
+ self.target_size = target_size
+ self.min_face = min_face
+ self.detector = Model(cfg=config_name)
+ self.device = device
+
+
+ def _preprocess(self, imgs):
+ """
+ Preprocessing image before passing through the network. Resize and conversion to torch tensor.
+ """
+ pp_imgs = []
+ for img in imgs:
+ h0, w0 = img.shape[:2] # orig hw
+ if self.target_size:
+ r = self.target_size / min(h0, w0) # resize image to img_size
+ if r < 1:
+ img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=cv2.INTER_LINEAR)
+
+ imgsz = check_img_size(max(img.shape[:2]), s=self.detector.stride.max()) # check img_size
+ img = letterbox(img, new_shape=imgsz)[0]
+ pp_imgs.append(img)
+ pp_imgs = np.array(pp_imgs)
+ pp_imgs = pp_imgs.transpose(0, 3, 1, 2)
+ pp_imgs = torch.from_numpy(pp_imgs).to(self.device)
+ pp_imgs = pp_imgs.float() # uint8 to fp16/32
+ return pp_imgs / 255.0 # 0 - 255 to 0.0 - 1.0
+
+ def _postprocess(self, imgs, origimgs, pred, conf_thres, iou_thres):
+ """
+ Postprocessing of raw pytorch model output.
+ Returns:
+ bboxes: list of arrays with 4 coordinates of bounding boxes with format x1,y1,x2,y2.
+ points: list of arrays with coordinates of 5 facial keypoints (eyes, nose, lips corners).
+ """
+ bboxes = [[] for _ in range(len(origimgs))]
+ landmarks = [[] for _ in range(len(origimgs))]
+
+ pred = non_max_suppression_face(pred, conf_thres, iou_thres)
+
+ for image_id, origimg in enumerate(origimgs):
+ img_shape = origimg.shape
+ image_height, image_width = img_shape[:2]
+ gn = torch.tensor(img_shape)[[1, 0, 1, 0]] # normalization gain whwh
+ gn_lks = torch.tensor(img_shape)[[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]] # normalization gain landmarks
+ det = pred[image_id].cpu()
+ scale_coords(imgs[image_id].shape[1:], det[:, :4], img_shape).round()
+ scale_coords_landmarks(imgs[image_id].shape[1:], det[:, 5:15], img_shape).round()
+
+ for j in range(det.size()[0]):
+ box = (det[j, :4].view(1, 4) / gn).view(-1).tolist()
+ box = list(
+ map(int, [box[0] * image_width, box[1] * image_height, box[2] * image_width, box[3] * image_height])
+ )
+ if box[3] - box[1] < self.min_face:
+ continue
+ lm = (det[j, 5:15].view(1, 10) / gn_lks).view(-1).tolist()
+ lm = list(map(int, [i * image_width if j % 2 == 0 else i * image_height for j, i in enumerate(lm)]))
+ lm = [lm[i : i + 2] for i in range(0, len(lm), 2)]
+ bboxes[image_id].append(box)
+ landmarks[image_id].append(lm)
+ return bboxes, landmarks
+
+ def detect_faces(self, imgs, conf_thres=0.7, iou_thres=0.5):
+ """
+ Get bbox coordinates and keypoints of faces on original image.
+ Params:
+ imgs: image or list of images to detect faces on with BGR order (convert to RGB order for inference)
+ conf_thres: confidence threshold for each prediction
+ iou_thres: threshold for NMS (filter of intersecting bboxes)
+ Returns:
+ bboxes: list of arrays with 4 coordinates of bounding boxes with format x1,y1,x2,y2.
+ points: list of arrays with coordinates of 5 facial keypoints (eyes, nose, lips corners).
+ """
+ # Pass input images through face detector
+ images = imgs if isinstance(imgs, list) else [imgs]
+ images = [cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in images]
+ origimgs = copy.deepcopy(images)
+
+ images = self._preprocess(images)
+
+ if IS_HIGH_VERSION:
+ with torch.inference_mode(): # for pytorch>=1.9
+ pred = self.detector(images)[0]
+ else:
+ with torch.no_grad(): # for pytorch<1.9
+ pred = self.detector(images)[0]
+
+ bboxes, points = self._postprocess(images, origimgs, pred, conf_thres, iou_thres)
+
+ # return bboxes, points
+ if not isListempty(points):
+ bboxes = np.array(bboxes).reshape(-1,4)
+ points = np.array(points).reshape(-1,10)
+ padding = bboxes[:,0].reshape(-1,1)
+ return np.concatenate((bboxes, padding, points), axis=1)
+ else:
+ return None
+
+ def __call__(self, *args):
+ return self.predict(*args)
diff --git a/CodeFormer/facelib/detection/yolov5face/models/__init__.py b/CodeFormer/facelib/detection/yolov5face/models/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/CodeFormer/facelib/detection/yolov5face/models/common.py b/CodeFormer/facelib/detection/yolov5face/models/common.py
new file mode 100644
index 0000000000000000000000000000000000000000..497a00444c4c59725001993a63fe4617e9d323c8
--- /dev/null
+++ b/CodeFormer/facelib/detection/yolov5face/models/common.py
@@ -0,0 +1,299 @@
+# This file contains modules common to various models
+
+import math
+
+import numpy as np
+import torch
+from torch import nn
+
+from facelib.detection.yolov5face.utils.datasets import letterbox
+from facelib.detection.yolov5face.utils.general import (
+ make_divisible,
+ non_max_suppression,
+ scale_coords,
+ xyxy2xywh,
+)
+
+
+def autopad(k, p=None): # kernel, padding
+ # Pad to 'same'
+ if p is None:
+ p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
+ return p
+
+
+def channel_shuffle(x, groups):
+ batchsize, num_channels, height, width = x.data.size()
+ channels_per_group = torch.div(num_channels, groups, rounding_mode="trunc")
+
+ # reshape
+ x = x.view(batchsize, groups, channels_per_group, height, width)
+ x = torch.transpose(x, 1, 2).contiguous()
+
+ # flatten
+ return x.view(batchsize, -1, height, width)
+
+
+def DWConv(c1, c2, k=1, s=1, act=True):
+ # Depthwise convolution
+ return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
+
+
+class Conv(nn.Module):
+ # Standard convolution
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
+ super().__init__()
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
+ self.bn = nn.BatchNorm2d(c2)
+ self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
+
+ def forward(self, x):
+ return self.act(self.bn(self.conv(x)))
+
+ def fuseforward(self, x):
+ return self.act(self.conv(x))
+
+
+class StemBlock(nn.Module):
+ def __init__(self, c1, c2, k=3, s=2, p=None, g=1, act=True):
+ super().__init__()
+ self.stem_1 = Conv(c1, c2, k, s, p, g, act)
+ self.stem_2a = Conv(c2, c2 // 2, 1, 1, 0)
+ self.stem_2b = Conv(c2 // 2, c2, 3, 2, 1)
+ self.stem_2p = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)
+ self.stem_3 = Conv(c2 * 2, c2, 1, 1, 0)
+
+ def forward(self, x):
+ stem_1_out = self.stem_1(x)
+ stem_2a_out = self.stem_2a(stem_1_out)
+ stem_2b_out = self.stem_2b(stem_2a_out)
+ stem_2p_out = self.stem_2p(stem_1_out)
+ return self.stem_3(torch.cat((stem_2b_out, stem_2p_out), 1))
+
+
+class Bottleneck(nn.Module):
+ # Standard bottleneck
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
+ super().__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c_, c2, 3, 1, g=g)
+ self.add = shortcut and c1 == c2
+
+ def forward(self, x):
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
+
+
+class BottleneckCSP(nn.Module):
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
+ self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
+ self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
+ self.act = nn.LeakyReLU(0.1, inplace=True)
+ self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
+
+ def forward(self, x):
+ y1 = self.cv3(self.m(self.cv1(x)))
+ y2 = self.cv2(x)
+ return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
+
+
+class C3(nn.Module):
+ # CSP Bottleneck with 3 convolutions
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super().__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c1, c_, 1, 1)
+ self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
+ self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
+
+ def forward(self, x):
+ return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
+
+
+class ShuffleV2Block(nn.Module):
+ def __init__(self, inp, oup, stride):
+ super().__init__()
+
+ if not 1 <= stride <= 3:
+ raise ValueError("illegal stride value")
+ self.stride = stride
+
+ branch_features = oup // 2
+
+ if self.stride > 1:
+ self.branch1 = nn.Sequential(
+ self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1),
+ nn.BatchNorm2d(inp),
+ nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
+ nn.BatchNorm2d(branch_features),
+ nn.SiLU(),
+ )
+ else:
+ self.branch1 = nn.Sequential()
+
+ self.branch2 = nn.Sequential(
+ nn.Conv2d(
+ inp if (self.stride > 1) else branch_features,
+ branch_features,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ bias=False,
+ ),
+ nn.BatchNorm2d(branch_features),
+ nn.SiLU(),
+ self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),
+ nn.BatchNorm2d(branch_features),
+ nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
+ nn.BatchNorm2d(branch_features),
+ nn.SiLU(),
+ )
+
+ @staticmethod
+ def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
+ return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)
+
+ def forward(self, x):
+ if self.stride == 1:
+ x1, x2 = x.chunk(2, dim=1)
+ out = torch.cat((x1, self.branch2(x2)), dim=1)
+ else:
+ out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)
+ out = channel_shuffle(out, 2)
+ return out
+
+
+class SPP(nn.Module):
+ # Spatial pyramid pooling layer used in YOLOv3-SPP
+ def __init__(self, c1, c2, k=(5, 9, 13)):
+ super().__init__()
+ c_ = c1 // 2 # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
+ self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
+
+ def forward(self, x):
+ x = self.cv1(x)
+ return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
+
+
+class Focus(nn.Module):
+ # Focus wh information into c-space
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
+ super().__init__()
+ self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
+
+ def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
+ return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
+
+
+class Concat(nn.Module):
+ # Concatenate a list of tensors along dimension
+ def __init__(self, dimension=1):
+ super().__init__()
+ self.d = dimension
+
+ def forward(self, x):
+ return torch.cat(x, self.d)
+
+
+class NMS(nn.Module):
+ # Non-Maximum Suppression (NMS) module
+ conf = 0.25 # confidence threshold
+ iou = 0.45 # IoU threshold
+ classes = None # (optional list) filter by class
+
+ def forward(self, x):
+ return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
+
+
+class AutoShape(nn.Module):
+ # input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
+ img_size = 640 # inference size (pixels)
+ conf = 0.25 # NMS confidence threshold
+ iou = 0.45 # NMS IoU threshold
+ classes = None # (optional list) filter by class
+
+ def __init__(self, model):
+ super().__init__()
+ self.model = model.eval()
+
+ def autoshape(self):
+ print("autoShape already enabled, skipping... ") # model already converted to model.autoshape()
+ return self
+
+ def forward(self, imgs, size=640, augment=False, profile=False):
+ # Inference from various sources. For height=720, width=1280, RGB images example inputs are:
+ # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3)
+ # PIL: = Image.open('image.jpg') # HWC x(720,1280,3)
+ # numpy: = np.zeros((720,1280,3)) # HWC
+ # torch: = torch.zeros(16,3,720,1280) # BCHW
+ # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
+
+ p = next(self.model.parameters()) # for device and type
+ if isinstance(imgs, torch.Tensor): # torch
+ return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
+
+ # Pre-process
+ n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
+ shape0, shape1 = [], [] # image and inference shapes
+ for i, im in enumerate(imgs):
+ im = np.array(im) # to numpy
+ if im.shape[0] < 5: # image in CHW
+ im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
+ im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
+ s = im.shape[:2] # HWC
+ shape0.append(s) # image shape
+ g = size / max(s) # gain
+ shape1.append([y * g for y in s])
+ imgs[i] = im # update
+ shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
+ x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
+ x = np.stack(x, 0) if n > 1 else x[0][None] # stack
+ x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
+ x = torch.from_numpy(x).to(p.device).type_as(p) / 255.0 # uint8 to fp16/32
+
+ # Inference
+ with torch.no_grad():
+ y = self.model(x, augment, profile)[0] # forward
+ y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
+
+ # Post-process
+ for i in range(n):
+ scale_coords(shape1, y[i][:, :4], shape0[i])
+
+ return Detections(imgs, y, self.names)
+
+
+class Detections:
+ # detections class for YOLOv5 inference results
+ def __init__(self, imgs, pred, names=None):
+ super().__init__()
+ d = pred[0].device # device
+ gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1.0, 1.0], device=d) for im in imgs] # normalizations
+ self.imgs = imgs # list of images as numpy arrays
+ self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
+ self.names = names # class names
+ self.xyxy = pred # xyxy pixels
+ self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
+ self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
+ self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
+ self.n = len(self.pred)
+
+ def __len__(self):
+ return self.n
+
+ def tolist(self):
+ # return a list of Detections objects, i.e. 'for result in results.tolist():'
+ x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)]
+ for d in x:
+ for k in ["imgs", "pred", "xyxy", "xyxyn", "xywh", "xywhn"]:
+ setattr(d, k, getattr(d, k)[0]) # pop out of list
+ return x
diff --git a/CodeFormer/facelib/detection/yolov5face/models/experimental.py b/CodeFormer/facelib/detection/yolov5face/models/experimental.py
new file mode 100644
index 0000000000000000000000000000000000000000..37ba4c4420789c92dc0e2aaeb3d5b64859ec728c
--- /dev/null
+++ b/CodeFormer/facelib/detection/yolov5face/models/experimental.py
@@ -0,0 +1,45 @@
+# # This file contains experimental modules
+
+import numpy as np
+import torch
+from torch import nn
+
+from facelib.detection.yolov5face.models.common import Conv
+
+
+class CrossConv(nn.Module):
+ # Cross Convolution Downsample
+ def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
+ # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
+ super().__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, (1, k), (1, s))
+ self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
+ self.add = shortcut and c1 == c2
+
+ def forward(self, x):
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
+
+
+class MixConv2d(nn.Module):
+ # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
+ def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
+ super().__init__()
+ groups = len(k)
+ if equal_ch: # equal c_ per group
+ i = torch.linspace(0, groups - 1e-6, c2).floor() # c2 indices
+ c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
+ else: # equal weight.numel() per group
+ b = [c2] + [0] * groups
+ a = np.eye(groups + 1, groups, k=-1)
+ a -= np.roll(a, 1, axis=1)
+ a *= np.array(k) ** 2
+ a[0] = 1
+ c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
+
+ self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
+ self.bn = nn.BatchNorm2d(c2)
+ self.act = nn.LeakyReLU(0.1, inplace=True)
+
+ def forward(self, x):
+ return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
diff --git a/CodeFormer/facelib/detection/yolov5face/models/yolo.py b/CodeFormer/facelib/detection/yolov5face/models/yolo.py
new file mode 100644
index 0000000000000000000000000000000000000000..70845d972f0bcfd3632fcbac096b23e1b4d4d779
--- /dev/null
+++ b/CodeFormer/facelib/detection/yolov5face/models/yolo.py
@@ -0,0 +1,235 @@
+import math
+from copy import deepcopy
+from pathlib import Path
+
+import torch
+import yaml # for torch hub
+from torch import nn
+
+from facelib.detection.yolov5face.models.common import (
+ C3,
+ NMS,
+ SPP,
+ AutoShape,
+ Bottleneck,
+ BottleneckCSP,
+ Concat,
+ Conv,
+ DWConv,
+ Focus,
+ ShuffleV2Block,
+ StemBlock,
+)
+from facelib.detection.yolov5face.models.experimental import CrossConv, MixConv2d
+from facelib.detection.yolov5face.utils.autoanchor import check_anchor_order
+from facelib.detection.yolov5face.utils.general import make_divisible
+from facelib.detection.yolov5face.utils.torch_utils import copy_attr, fuse_conv_and_bn
+
+
+class Detect(nn.Module):
+ stride = None # strides computed during build
+ export = False # onnx export
+
+ def __init__(self, nc=80, anchors=(), ch=()): # detection layer
+ super().__init__()
+ self.nc = nc # number of classes
+ self.no = nc + 5 + 10 # number of outputs per anchor
+
+ self.nl = len(anchors) # number of detection layers
+ self.na = len(anchors[0]) // 2 # number of anchors
+ self.grid = [torch.zeros(1)] * self.nl # init grid
+ a = torch.tensor(anchors).float().view(self.nl, -1, 2)
+ self.register_buffer("anchors", a) # shape(nl,na,2)
+ self.register_buffer("anchor_grid", a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
+ self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
+
+ def forward(self, x):
+ z = [] # inference output
+ if self.export:
+ for i in range(self.nl):
+ x[i] = self.m[i](x[i])
+ return x
+ for i in range(self.nl):
+ x[i] = self.m[i](x[i]) # conv
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
+
+ if not self.training: # inference
+ if self.grid[i].shape[2:4] != x[i].shape[2:4]:
+ self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
+
+ y = torch.full_like(x[i], 0)
+ y[..., [0, 1, 2, 3, 4, 15]] = x[i][..., [0, 1, 2, 3, 4, 15]].sigmoid()
+ y[..., 5:15] = x[i][..., 5:15]
+
+ y[..., 0:2] = (y[..., 0:2] * 2.0 - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
+ y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
+
+ y[..., 5:7] = (
+ y[..., 5:7] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
+ ) # landmark x1 y1
+ y[..., 7:9] = (
+ y[..., 7:9] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
+ ) # landmark x2 y2
+ y[..., 9:11] = (
+ y[..., 9:11] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
+ ) # landmark x3 y3
+ y[..., 11:13] = (
+ y[..., 11:13] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
+ ) # landmark x4 y4
+ y[..., 13:15] = (
+ y[..., 13:15] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
+ ) # landmark x5 y5
+
+ z.append(y.view(bs, -1, self.no))
+
+ return x if self.training else (torch.cat(z, 1), x)
+
+ @staticmethod
+ def _make_grid(nx=20, ny=20):
+ # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)], indexing="ij") # for pytorch>=1.10
+ yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
+ return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
+
+
+class Model(nn.Module):
+ def __init__(self, cfg="yolov5s.yaml", ch=3, nc=None): # model, input channels, number of classes
+ super().__init__()
+ self.yaml_file = Path(cfg).name
+ with Path(cfg).open(encoding="utf8") as f:
+ self.yaml = yaml.safe_load(f) # model dict
+
+ # Define model
+ ch = self.yaml["ch"] = self.yaml.get("ch", ch) # input channels
+ if nc and nc != self.yaml["nc"]:
+ self.yaml["nc"] = nc # override yaml value
+
+ self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
+ self.names = [str(i) for i in range(self.yaml["nc"])] # default names
+
+ # Build strides, anchors
+ m = self.model[-1] # Detect()
+ if isinstance(m, Detect):
+ s = 128 # 2x min stride
+ m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
+ m.anchors /= m.stride.view(-1, 1, 1)
+ check_anchor_order(m)
+ self.stride = m.stride
+ self._initialize_biases() # only run once
+
+ def forward(self, x):
+ return self.forward_once(x) # single-scale inference, train
+
+ def forward_once(self, x):
+ y = [] # outputs
+ for m in self.model:
+ if m.f != -1: # if not from previous layer
+ x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
+
+ x = m(x) # run
+ y.append(x if m.i in self.save else None) # save output
+
+ return x
+
+ def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
+ # https://arxiv.org/abs/1708.02002 section 3.3
+ m = self.model[-1] # Detect() module
+ for mi, s in zip(m.m, m.stride): # from
+ b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
+ b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
+ b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
+ mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
+
+ def _print_biases(self):
+ m = self.model[-1] # Detect() module
+ for mi in m.m: # from
+ b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
+ print(("%6g Conv2d.bias:" + "%10.3g" * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
+
+ def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
+ print("Fusing layers... ")
+ for m in self.model.modules():
+ if isinstance(m, Conv) and hasattr(m, "bn"):
+ m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
+ delattr(m, "bn") # remove batchnorm
+ m.forward = m.fuseforward # update forward
+ elif type(m) is nn.Upsample:
+ m.recompute_scale_factor = None # torch 1.11.0 compatibility
+ return self
+
+ def nms(self, mode=True): # add or remove NMS module
+ present = isinstance(self.model[-1], NMS) # last layer is NMS
+ if mode and not present:
+ print("Adding NMS... ")
+ m = NMS() # module
+ m.f = -1 # from
+ m.i = self.model[-1].i + 1 # index
+ self.model.add_module(name=str(m.i), module=m) # add
+ self.eval()
+ elif not mode and present:
+ print("Removing NMS... ")
+ self.model = self.model[:-1] # remove
+ return self
+
+ def autoshape(self): # add autoShape module
+ print("Adding autoShape... ")
+ m = AutoShape(self) # wrap model
+ copy_attr(m, self, include=("yaml", "nc", "hyp", "names", "stride"), exclude=()) # copy attributes
+ return m
+
+
+def parse_model(d, ch): # model_dict, input_channels(3)
+ anchors, nc, gd, gw = d["anchors"], d["nc"], d["depth_multiple"], d["width_multiple"]
+ na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
+ no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
+
+ layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
+ for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): # from, number, module, args
+ m = eval(m) if isinstance(m, str) else m # eval strings
+ for j, a in enumerate(args):
+ try:
+ args[j] = eval(a) if isinstance(a, str) else a # eval strings
+ except:
+ pass
+
+ n = max(round(n * gd), 1) if n > 1 else n # depth gain
+ if m in [
+ Conv,
+ Bottleneck,
+ SPP,
+ DWConv,
+ MixConv2d,
+ Focus,
+ CrossConv,
+ BottleneckCSP,
+ C3,
+ ShuffleV2Block,
+ StemBlock,
+ ]:
+ c1, c2 = ch[f], args[0]
+
+ c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
+
+ args = [c1, c2, *args[1:]]
+ if m in [BottleneckCSP, C3]:
+ args.insert(2, n)
+ n = 1
+ elif m is nn.BatchNorm2d:
+ args = [ch[f]]
+ elif m is Concat:
+ c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
+ elif m is Detect:
+ args.append([ch[x + 1] for x in f])
+ if isinstance(args[1], int): # number of anchors
+ args[1] = [list(range(args[1] * 2))] * len(f)
+ else:
+ c2 = ch[f]
+
+ m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
+ t = str(m)[8:-2].replace("__main__.", "") # module type
+ np = sum(x.numel() for x in m_.parameters()) # number params
+ m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
+ save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
+ layers.append(m_)
+ ch.append(c2)
+ return nn.Sequential(*layers), sorted(save)
diff --git a/CodeFormer/facelib/detection/yolov5face/models/yolov5l.yaml b/CodeFormer/facelib/detection/yolov5face/models/yolov5l.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..0532b0e22fa7f59349b178146ffddcfdb368aba6
--- /dev/null
+++ b/CodeFormer/facelib/detection/yolov5face/models/yolov5l.yaml
@@ -0,0 +1,47 @@
+# parameters
+nc: 1 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [4,5, 8,10, 13,16] # P3/8
+ - [23,29, 43,55, 73,105] # P4/16
+ - [146,217, 231,300, 335,433] # P5/32
+
+# YOLOv5 backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, StemBlock, [64, 3, 2]], # 0-P1/2
+ [-1, 3, C3, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 2-P3/8
+ [-1, 9, C3, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 4-P4/16
+ [-1, 9, C3, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 6-P5/32
+ [-1, 1, SPP, [1024, [3,5,7]]],
+ [-1, 3, C3, [1024, False]], # 8
+ ]
+
+# YOLOv5 head
+head:
+ [[-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 5], 1, Concat, [1]], # cat backbone P4
+ [-1, 3, C3, [512, False]], # 12
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 3], 1, Concat, [1]], # cat backbone P3
+ [-1, 3, C3, [256, False]], # 16 (P3/8-small)
+
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, 13], 1, Concat, [1]], # cat head P4
+ [-1, 3, C3, [512, False]], # 19 (P4/16-medium)
+
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, 9], 1, Concat, [1]], # cat head P5
+ [-1, 3, C3, [1024, False]], # 22 (P5/32-large)
+
+ [[16, 19, 22], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
\ No newline at end of file
diff --git a/CodeFormer/facelib/detection/yolov5face/models/yolov5n.yaml b/CodeFormer/facelib/detection/yolov5face/models/yolov5n.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..caba6bed674aa2213b110f19e04eb352ffbeaf1e
--- /dev/null
+++ b/CodeFormer/facelib/detection/yolov5face/models/yolov5n.yaml
@@ -0,0 +1,45 @@
+# parameters
+nc: 1 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [4,5, 8,10, 13,16] # P3/8
+ - [23,29, 43,55, 73,105] # P4/16
+ - [146,217, 231,300, 335,433] # P5/32
+
+# YOLOv5 backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, StemBlock, [32, 3, 2]], # 0-P2/4
+ [-1, 1, ShuffleV2Block, [128, 2]], # 1-P3/8
+ [-1, 3, ShuffleV2Block, [128, 1]], # 2
+ [-1, 1, ShuffleV2Block, [256, 2]], # 3-P4/16
+ [-1, 7, ShuffleV2Block, [256, 1]], # 4
+ [-1, 1, ShuffleV2Block, [512, 2]], # 5-P5/32
+ [-1, 3, ShuffleV2Block, [512, 1]], # 6
+ ]
+
+# YOLOv5 head
+head:
+ [[-1, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 4], 1, Concat, [1]], # cat backbone P4
+ [-1, 1, C3, [128, False]], # 10
+
+ [-1, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 2], 1, Concat, [1]], # cat backbone P3
+ [-1, 1, C3, [128, False]], # 14 (P3/8-small)
+
+ [-1, 1, Conv, [128, 3, 2]],
+ [[-1, 11], 1, Concat, [1]], # cat head P4
+ [-1, 1, C3, [128, False]], # 17 (P4/16-medium)
+
+ [-1, 1, Conv, [128, 3, 2]],
+ [[-1, 7], 1, Concat, [1]], # cat head P5
+ [-1, 1, C3, [128, False]], # 20 (P5/32-large)
+
+ [[14, 17, 20], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/CodeFormer/facelib/detection/yolov5face/utils/__init__.py b/CodeFormer/facelib/detection/yolov5face/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/CodeFormer/facelib/detection/yolov5face/utils/autoanchor.py b/CodeFormer/facelib/detection/yolov5face/utils/autoanchor.py
new file mode 100644
index 0000000000000000000000000000000000000000..a4eba3e94888709be7d2a7c7499fbcc1808b4a88
--- /dev/null
+++ b/CodeFormer/facelib/detection/yolov5face/utils/autoanchor.py
@@ -0,0 +1,12 @@
+# Auto-anchor utils
+
+
+def check_anchor_order(m):
+ # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
+ a = m.anchor_grid.prod(-1).view(-1) # anchor area
+ da = a[-1] - a[0] # delta a
+ ds = m.stride[-1] - m.stride[0] # delta s
+ if da.sign() != ds.sign(): # same order
+ print("Reversing anchor order")
+ m.anchors[:] = m.anchors.flip(0)
+ m.anchor_grid[:] = m.anchor_grid.flip(0)
diff --git a/CodeFormer/facelib/detection/yolov5face/utils/datasets.py b/CodeFormer/facelib/detection/yolov5face/utils/datasets.py
new file mode 100755
index 0000000000000000000000000000000000000000..e672b136f56fd6b05038e24377908361a54fe519
--- /dev/null
+++ b/CodeFormer/facelib/detection/yolov5face/utils/datasets.py
@@ -0,0 +1,35 @@
+import cv2
+import numpy as np
+
+
+def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scale_fill=False, scaleup=True):
+ # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
+ shape = img.shape[:2] # current shape [height, width]
+ if isinstance(new_shape, int):
+ new_shape = (new_shape, new_shape)
+
+ # Scale ratio (new / old)
+ r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
+ if not scaleup: # only scale down, do not scale up (for better test mAP)
+ r = min(r, 1.0)
+
+ # Compute padding
+ ratio = r, r # width, height ratios
+ new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
+ dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
+ if auto: # minimum rectangle
+ dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding
+ elif scale_fill: # stretch
+ dw, dh = 0.0, 0.0
+ new_unpad = (new_shape[1], new_shape[0])
+ ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
+
+ dw /= 2 # divide padding into 2 sides
+ dh /= 2
+
+ if shape[::-1] != new_unpad: # resize
+ img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
+ top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
+ left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
+ img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
+ return img, ratio, (dw, dh)
diff --git a/CodeFormer/facelib/detection/yolov5face/utils/extract_ckpt.py b/CodeFormer/facelib/detection/yolov5face/utils/extract_ckpt.py
new file mode 100644
index 0000000000000000000000000000000000000000..4b8b631348f2d0cdea4e5a3594bb59f3e8f34a0f
--- /dev/null
+++ b/CodeFormer/facelib/detection/yolov5face/utils/extract_ckpt.py
@@ -0,0 +1,5 @@
+import torch
+import sys
+sys.path.insert(0,'./facelib/detection/yolov5face')
+model = torch.load('facelib/detection/yolov5face/yolov5n-face.pt', map_location='cpu')['model']
+torch.save(model.state_dict(),'weights/facelib/yolov5n-face.pth')
\ No newline at end of file
diff --git a/CodeFormer/facelib/detection/yolov5face/utils/general.py b/CodeFormer/facelib/detection/yolov5face/utils/general.py
new file mode 100755
index 0000000000000000000000000000000000000000..1c8e14f56a107ec3a4269c382cfc5168ad780ffc
--- /dev/null
+++ b/CodeFormer/facelib/detection/yolov5face/utils/general.py
@@ -0,0 +1,271 @@
+import math
+import time
+
+import numpy as np
+import torch
+import torchvision
+
+
+def check_img_size(img_size, s=32):
+ # Verify img_size is a multiple of stride s
+ new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
+ # if new_size != img_size:
+ # print(f"WARNING: --img-size {img_size:g} must be multiple of max stride {s:g}, updating to {new_size:g}")
+ return new_size
+
+
+def make_divisible(x, divisor):
+ # Returns x evenly divisible by divisor
+ return math.ceil(x / divisor) * divisor
+
+
+def xyxy2xywh(x):
+ # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+ y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
+ y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
+ y[:, 2] = x[:, 2] - x[:, 0] # width
+ y[:, 3] = x[:, 3] - x[:, 1] # height
+ return y
+
+
+def xywh2xyxy(x):
+ # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+ y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
+ y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
+ y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
+ y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
+ return y
+
+
+def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
+ # Rescale coords (xyxy) from img1_shape to img0_shape
+ if ratio_pad is None: # calculate from img0_shape
+ gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
+ pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
+ else:
+ gain = ratio_pad[0][0]
+ pad = ratio_pad[1]
+
+ coords[:, [0, 2]] -= pad[0] # x padding
+ coords[:, [1, 3]] -= pad[1] # y padding
+ coords[:, :4] /= gain
+ clip_coords(coords, img0_shape)
+ return coords
+
+
+def clip_coords(boxes, img_shape):
+ # Clip bounding xyxy bounding boxes to image shape (height, width)
+ boxes[:, 0].clamp_(0, img_shape[1]) # x1
+ boxes[:, 1].clamp_(0, img_shape[0]) # y1
+ boxes[:, 2].clamp_(0, img_shape[1]) # x2
+ boxes[:, 3].clamp_(0, img_shape[0]) # y2
+
+
+def box_iou(box1, box2):
+ # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
+ """
+ Return intersection-over-union (Jaccard index) of boxes.
+ Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
+ Arguments:
+ box1 (Tensor[N, 4])
+ box2 (Tensor[M, 4])
+ Returns:
+ iou (Tensor[N, M]): the NxM matrix containing the pairwise
+ IoU values for every element in boxes1 and boxes2
+ """
+
+ def box_area(box):
+ return (box[2] - box[0]) * (box[3] - box[1])
+
+ area1 = box_area(box1.T)
+ area2 = box_area(box2.T)
+
+ inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
+ return inter / (area1[:, None] + area2 - inter)
+
+
+def non_max_suppression_face(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
+ """Performs Non-Maximum Suppression (NMS) on inference results
+ Returns:
+ detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
+ """
+
+ nc = prediction.shape[2] - 15 # number of classes
+ xc = prediction[..., 4] > conf_thres # candidates
+
+ # Settings
+ # (pixels) maximum box width and height
+ max_wh = 4096
+ time_limit = 10.0 # seconds to quit after
+ redundant = True # require redundant detections
+ multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
+ merge = False # use merge-NMS
+
+ t = time.time()
+ output = [torch.zeros((0, 16), device=prediction.device)] * prediction.shape[0]
+ for xi, x in enumerate(prediction): # image index, image inference
+ # Apply constraints
+ x = x[xc[xi]] # confidence
+
+ # Cat apriori labels if autolabelling
+ if labels and len(labels[xi]):
+ label = labels[xi]
+ v = torch.zeros((len(label), nc + 15), device=x.device)
+ v[:, :4] = label[:, 1:5] # box
+ v[:, 4] = 1.0 # conf
+ v[range(len(label)), label[:, 0].long() + 15] = 1.0 # cls
+ x = torch.cat((x, v), 0)
+
+ # If none remain process next image
+ if not x.shape[0]:
+ continue
+
+ # Compute conf
+ x[:, 15:] *= x[:, 4:5] # conf = obj_conf * cls_conf
+
+ # Box (center x, center y, width, height) to (x1, y1, x2, y2)
+ box = xywh2xyxy(x[:, :4])
+
+ # Detections matrix nx6 (xyxy, conf, landmarks, cls)
+ if multi_label:
+ i, j = (x[:, 15:] > conf_thres).nonzero(as_tuple=False).T
+ x = torch.cat((box[i], x[i, j + 15, None], x[:, 5:15], j[:, None].float()), 1)
+ else: # best class only
+ conf, j = x[:, 15:].max(1, keepdim=True)
+ x = torch.cat((box, conf, x[:, 5:15], j.float()), 1)[conf.view(-1) > conf_thres]
+
+ # Filter by class
+ if classes is not None:
+ x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
+
+ # If none remain process next image
+ n = x.shape[0] # number of boxes
+ if not n:
+ continue
+
+ # Batched NMS
+ c = x[:, 15:16] * (0 if agnostic else max_wh) # classes
+ boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
+ i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
+
+ if merge and (1 < n < 3e3): # Merge NMS (boxes merged using weighted mean)
+ # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
+ iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
+ weights = iou * scores[None] # box weights
+ x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
+ if redundant:
+ i = i[iou.sum(1) > 1] # require redundancy
+
+ output[xi] = x[i]
+ if (time.time() - t) > time_limit:
+ break # time limit exceeded
+
+ return output
+
+
+def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
+ """Performs Non-Maximum Suppression (NMS) on inference results
+
+ Returns:
+ detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
+ """
+
+ nc = prediction.shape[2] - 5 # number of classes
+ xc = prediction[..., 4] > conf_thres # candidates
+
+ # Settings
+ # (pixels) maximum box width and height
+ max_wh = 4096
+ time_limit = 10.0 # seconds to quit after
+ redundant = True # require redundant detections
+ multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
+ merge = False # use merge-NMS
+
+ t = time.time()
+ output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
+ for xi, x in enumerate(prediction): # image index, image inference
+ x = x[xc[xi]] # confidence
+
+ # Cat apriori labels if autolabelling
+ if labels and len(labels[xi]):
+ label_id = labels[xi]
+ v = torch.zeros((len(label_id), nc + 5), device=x.device)
+ v[:, :4] = label_id[:, 1:5] # box
+ v[:, 4] = 1.0 # conf
+ v[range(len(label_id)), label_id[:, 0].long() + 5] = 1.0 # cls
+ x = torch.cat((x, v), 0)
+
+ # If none remain process next image
+ if not x.shape[0]:
+ continue
+
+ # Compute conf
+ x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
+
+ # Box (center x, center y, width, height) to (x1, y1, x2, y2)
+ box = xywh2xyxy(x[:, :4])
+
+ # Detections matrix nx6 (xyxy, conf, cls)
+ if multi_label:
+ i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
+ x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
+ else: # best class only
+ conf, j = x[:, 5:].max(1, keepdim=True)
+ x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
+
+ # Filter by class
+ if classes is not None:
+ x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
+
+ # Check shape
+ n = x.shape[0] # number of boxes
+ if not n: # no boxes
+ continue
+
+ x = x[x[:, 4].argsort(descending=True)] # sort by confidence
+
+ # Batched NMS
+ c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
+ boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
+ i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
+ if merge and (1 < n < 3e3): # Merge NMS (boxes merged using weighted mean)
+ # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
+ iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
+ weights = iou * scores[None] # box weights
+ x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
+ if redundant:
+ i = i[iou.sum(1) > 1] # require redundancy
+
+ output[xi] = x[i]
+ if (time.time() - t) > time_limit:
+ print(f"WARNING: NMS time limit {time_limit}s exceeded")
+ break # time limit exceeded
+
+ return output
+
+
+def scale_coords_landmarks(img1_shape, coords, img0_shape, ratio_pad=None):
+ # Rescale coords (xyxy) from img1_shape to img0_shape
+ if ratio_pad is None: # calculate from img0_shape
+ gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
+ pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
+ else:
+ gain = ratio_pad[0][0]
+ pad = ratio_pad[1]
+
+ coords[:, [0, 2, 4, 6, 8]] -= pad[0] # x padding
+ coords[:, [1, 3, 5, 7, 9]] -= pad[1] # y padding
+ coords[:, :10] /= gain
+ coords[:, 0].clamp_(0, img0_shape[1]) # x1
+ coords[:, 1].clamp_(0, img0_shape[0]) # y1
+ coords[:, 2].clamp_(0, img0_shape[1]) # x2
+ coords[:, 3].clamp_(0, img0_shape[0]) # y2
+ coords[:, 4].clamp_(0, img0_shape[1]) # x3
+ coords[:, 5].clamp_(0, img0_shape[0]) # y3
+ coords[:, 6].clamp_(0, img0_shape[1]) # x4
+ coords[:, 7].clamp_(0, img0_shape[0]) # y4
+ coords[:, 8].clamp_(0, img0_shape[1]) # x5
+ coords[:, 9].clamp_(0, img0_shape[0]) # y5
+ return coords
diff --git a/CodeFormer/facelib/detection/yolov5face/utils/torch_utils.py b/CodeFormer/facelib/detection/yolov5face/utils/torch_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..af2d06587b2d07b2eab199a8484380fde1de5c3c
--- /dev/null
+++ b/CodeFormer/facelib/detection/yolov5face/utils/torch_utils.py
@@ -0,0 +1,40 @@
+import torch
+from torch import nn
+
+
+def fuse_conv_and_bn(conv, bn):
+ # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
+ fusedconv = (
+ nn.Conv2d(
+ conv.in_channels,
+ conv.out_channels,
+ kernel_size=conv.kernel_size,
+ stride=conv.stride,
+ padding=conv.padding,
+ groups=conv.groups,
+ bias=True,
+ )
+ .requires_grad_(False)
+ .to(conv.weight.device)
+ )
+
+ # prepare filters
+ w_conv = conv.weight.clone().view(conv.out_channels, -1)
+ w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
+ fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
+
+ # prepare spatial bias
+ b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
+ b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
+ fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
+
+ return fusedconv
+
+
+def copy_attr(a, b, include=(), exclude=()):
+ # Copy attributes from b to a, options to only include [...] and to exclude [...]
+ for k, v in b.__dict__.items():
+ if (include and k not in include) or k.startswith("_") or k in exclude:
+ continue
+
+ setattr(a, k, v)
diff --git a/CodeFormer/facelib/parsing/__init__.py b/CodeFormer/facelib/parsing/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..72656e4b5f61df8cd0838588b0c6488fcc886e16
--- /dev/null
+++ b/CodeFormer/facelib/parsing/__init__.py
@@ -0,0 +1,23 @@
+import torch
+
+from facelib.utils import load_file_from_url
+from .bisenet import BiSeNet
+from .parsenet import ParseNet
+
+
+def init_parsing_model(model_name='bisenet', half=False, device='cuda'):
+ if model_name == 'bisenet':
+ model = BiSeNet(num_class=19)
+ model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_bisenet.pth'
+ elif model_name == 'parsenet':
+ model = ParseNet(in_size=512, out_size=512, parsing_ch=19)
+ model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth'
+ else:
+ raise NotImplementedError(f'{model_name} is not implemented.')
+
+ model_path = load_file_from_url(url=model_url, model_dir='weights/facelib', progress=True, file_name=None)
+ load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
+ model.load_state_dict(load_net, strict=True)
+ model.eval()
+ model = model.to(device)
+ return model
diff --git a/CodeFormer/facelib/parsing/bisenet.py b/CodeFormer/facelib/parsing/bisenet.py
new file mode 100644
index 0000000000000000000000000000000000000000..3898cab76ae5876459cd4899c54cafa14234971d
--- /dev/null
+++ b/CodeFormer/facelib/parsing/bisenet.py
@@ -0,0 +1,140 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from .resnet import ResNet18
+
+
+class ConvBNReLU(nn.Module):
+
+ def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1):
+ super(ConvBNReLU, self).__init__()
+ self.conv = nn.Conv2d(in_chan, out_chan, kernel_size=ks, stride=stride, padding=padding, bias=False)
+ self.bn = nn.BatchNorm2d(out_chan)
+
+ def forward(self, x):
+ x = self.conv(x)
+ x = F.relu(self.bn(x))
+ return x
+
+
+class BiSeNetOutput(nn.Module):
+
+ def __init__(self, in_chan, mid_chan, num_class):
+ super(BiSeNetOutput, self).__init__()
+ self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1)
+ self.conv_out = nn.Conv2d(mid_chan, num_class, kernel_size=1, bias=False)
+
+ def forward(self, x):
+ feat = self.conv(x)
+ out = self.conv_out(feat)
+ return out, feat
+
+
+class AttentionRefinementModule(nn.Module):
+
+ def __init__(self, in_chan, out_chan):
+ super(AttentionRefinementModule, self).__init__()
+ self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1)
+ self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size=1, bias=False)
+ self.bn_atten = nn.BatchNorm2d(out_chan)
+ self.sigmoid_atten = nn.Sigmoid()
+
+ def forward(self, x):
+ feat = self.conv(x)
+ atten = F.avg_pool2d(feat, feat.size()[2:])
+ atten = self.conv_atten(atten)
+ atten = self.bn_atten(atten)
+ atten = self.sigmoid_atten(atten)
+ out = torch.mul(feat, atten)
+ return out
+
+
+class ContextPath(nn.Module):
+
+ def __init__(self):
+ super(ContextPath, self).__init__()
+ self.resnet = ResNet18()
+ self.arm16 = AttentionRefinementModule(256, 128)
+ self.arm32 = AttentionRefinementModule(512, 128)
+ self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
+ self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
+ self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0)
+
+ def forward(self, x):
+ feat8, feat16, feat32 = self.resnet(x)
+ h8, w8 = feat8.size()[2:]
+ h16, w16 = feat16.size()[2:]
+ h32, w32 = feat32.size()[2:]
+
+ avg = F.avg_pool2d(feat32, feat32.size()[2:])
+ avg = self.conv_avg(avg)
+ avg_up = F.interpolate(avg, (h32, w32), mode='nearest')
+
+ feat32_arm = self.arm32(feat32)
+ feat32_sum = feat32_arm + avg_up
+ feat32_up = F.interpolate(feat32_sum, (h16, w16), mode='nearest')
+ feat32_up = self.conv_head32(feat32_up)
+
+ feat16_arm = self.arm16(feat16)
+ feat16_sum = feat16_arm + feat32_up
+ feat16_up = F.interpolate(feat16_sum, (h8, w8), mode='nearest')
+ feat16_up = self.conv_head16(feat16_up)
+
+ return feat8, feat16_up, feat32_up # x8, x8, x16
+
+
+class FeatureFusionModule(nn.Module):
+
+ def __init__(self, in_chan, out_chan):
+ super(FeatureFusionModule, self).__init__()
+ self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0)
+ self.conv1 = nn.Conv2d(out_chan, out_chan // 4, kernel_size=1, stride=1, padding=0, bias=False)
+ self.conv2 = nn.Conv2d(out_chan // 4, out_chan, kernel_size=1, stride=1, padding=0, bias=False)
+ self.relu = nn.ReLU(inplace=True)
+ self.sigmoid = nn.Sigmoid()
+
+ def forward(self, fsp, fcp):
+ fcat = torch.cat([fsp, fcp], dim=1)
+ feat = self.convblk(fcat)
+ atten = F.avg_pool2d(feat, feat.size()[2:])
+ atten = self.conv1(atten)
+ atten = self.relu(atten)
+ atten = self.conv2(atten)
+ atten = self.sigmoid(atten)
+ feat_atten = torch.mul(feat, atten)
+ feat_out = feat_atten + feat
+ return feat_out
+
+
+class BiSeNet(nn.Module):
+
+ def __init__(self, num_class):
+ super(BiSeNet, self).__init__()
+ self.cp = ContextPath()
+ self.ffm = FeatureFusionModule(256, 256)
+ self.conv_out = BiSeNetOutput(256, 256, num_class)
+ self.conv_out16 = BiSeNetOutput(128, 64, num_class)
+ self.conv_out32 = BiSeNetOutput(128, 64, num_class)
+
+ def forward(self, x, return_feat=False):
+ h, w = x.size()[2:]
+ feat_res8, feat_cp8, feat_cp16 = self.cp(x) # return res3b1 feature
+ feat_sp = feat_res8 # replace spatial path feature with res3b1 feature
+ feat_fuse = self.ffm(feat_sp, feat_cp8)
+
+ out, feat = self.conv_out(feat_fuse)
+ out16, feat16 = self.conv_out16(feat_cp8)
+ out32, feat32 = self.conv_out32(feat_cp16)
+
+ out = F.interpolate(out, (h, w), mode='bilinear', align_corners=True)
+ out16 = F.interpolate(out16, (h, w), mode='bilinear', align_corners=True)
+ out32 = F.interpolate(out32, (h, w), mode='bilinear', align_corners=True)
+
+ if return_feat:
+ feat = F.interpolate(feat, (h, w), mode='bilinear', align_corners=True)
+ feat16 = F.interpolate(feat16, (h, w), mode='bilinear', align_corners=True)
+ feat32 = F.interpolate(feat32, (h, w), mode='bilinear', align_corners=True)
+ return out, out16, out32, feat, feat16, feat32
+ else:
+ return out, out16, out32
diff --git a/CodeFormer/facelib/parsing/parsenet.py b/CodeFormer/facelib/parsing/parsenet.py
new file mode 100644
index 0000000000000000000000000000000000000000..e178ebe43a1ef666aaea0bc0faf629485c22a24f
--- /dev/null
+++ b/CodeFormer/facelib/parsing/parsenet.py
@@ -0,0 +1,194 @@
+"""Modified from https://github.com/chaofengc/PSFRGAN
+"""
+import numpy as np
+import torch.nn as nn
+from torch.nn import functional as F
+
+
+class NormLayer(nn.Module):
+ """Normalization Layers.
+
+ Args:
+ channels: input channels, for batch norm and instance norm.
+ input_size: input shape without batch size, for layer norm.
+ """
+
+ def __init__(self, channels, normalize_shape=None, norm_type='bn'):
+ super(NormLayer, self).__init__()
+ norm_type = norm_type.lower()
+ self.norm_type = norm_type
+ if norm_type == 'bn':
+ self.norm = nn.BatchNorm2d(channels, affine=True)
+ elif norm_type == 'in':
+ self.norm = nn.InstanceNorm2d(channels, affine=False)
+ elif norm_type == 'gn':
+ self.norm = nn.GroupNorm(32, channels, affine=True)
+ elif norm_type == 'pixel':
+ self.norm = lambda x: F.normalize(x, p=2, dim=1)
+ elif norm_type == 'layer':
+ self.norm = nn.LayerNorm(normalize_shape)
+ elif norm_type == 'none':
+ self.norm = lambda x: x * 1.0
+ else:
+ assert 1 == 0, f'Norm type {norm_type} not support.'
+
+ def forward(self, x, ref=None):
+ if self.norm_type == 'spade':
+ return self.norm(x, ref)
+ else:
+ return self.norm(x)
+
+
+class ReluLayer(nn.Module):
+ """Relu Layer.
+
+ Args:
+ relu type: type of relu layer, candidates are
+ - ReLU
+ - LeakyReLU: default relu slope 0.2
+ - PRelu
+ - SELU
+ - none: direct pass
+ """
+
+ def __init__(self, channels, relu_type='relu'):
+ super(ReluLayer, self).__init__()
+ relu_type = relu_type.lower()
+ if relu_type == 'relu':
+ self.func = nn.ReLU(True)
+ elif relu_type == 'leakyrelu':
+ self.func = nn.LeakyReLU(0.2, inplace=True)
+ elif relu_type == 'prelu':
+ self.func = nn.PReLU(channels)
+ elif relu_type == 'selu':
+ self.func = nn.SELU(True)
+ elif relu_type == 'none':
+ self.func = lambda x: x * 1.0
+ else:
+ assert 1 == 0, f'Relu type {relu_type} not support.'
+
+ def forward(self, x):
+ return self.func(x)
+
+
+class ConvLayer(nn.Module):
+
+ def __init__(self,
+ in_channels,
+ out_channels,
+ kernel_size=3,
+ scale='none',
+ norm_type='none',
+ relu_type='none',
+ use_pad=True,
+ bias=True):
+ super(ConvLayer, self).__init__()
+ self.use_pad = use_pad
+ self.norm_type = norm_type
+ if norm_type in ['bn']:
+ bias = False
+
+ stride = 2 if scale == 'down' else 1
+
+ self.scale_func = lambda x: x
+ if scale == 'up':
+ self.scale_func = lambda x: nn.functional.interpolate(x, scale_factor=2, mode='nearest')
+
+ self.reflection_pad = nn.ReflectionPad2d(int(np.ceil((kernel_size - 1.) / 2)))
+ self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, bias=bias)
+
+ self.relu = ReluLayer(out_channels, relu_type)
+ self.norm = NormLayer(out_channels, norm_type=norm_type)
+
+ def forward(self, x):
+ out = self.scale_func(x)
+ if self.use_pad:
+ out = self.reflection_pad(out)
+ out = self.conv2d(out)
+ out = self.norm(out)
+ out = self.relu(out)
+ return out
+
+
+class ResidualBlock(nn.Module):
+ """
+ Residual block recommended in: http://torch.ch/blog/2016/02/04/resnets.html
+ """
+
+ def __init__(self, c_in, c_out, relu_type='prelu', norm_type='bn', scale='none'):
+ super(ResidualBlock, self).__init__()
+
+ if scale == 'none' and c_in == c_out:
+ self.shortcut_func = lambda x: x
+ else:
+ self.shortcut_func = ConvLayer(c_in, c_out, 3, scale)
+
+ scale_config_dict = {'down': ['none', 'down'], 'up': ['up', 'none'], 'none': ['none', 'none']}
+ scale_conf = scale_config_dict[scale]
+
+ self.conv1 = ConvLayer(c_in, c_out, 3, scale_conf[0], norm_type=norm_type, relu_type=relu_type)
+ self.conv2 = ConvLayer(c_out, c_out, 3, scale_conf[1], norm_type=norm_type, relu_type='none')
+
+ def forward(self, x):
+ identity = self.shortcut_func(x)
+
+ res = self.conv1(x)
+ res = self.conv2(res)
+ return identity + res
+
+
+class ParseNet(nn.Module):
+
+ def __init__(self,
+ in_size=128,
+ out_size=128,
+ min_feat_size=32,
+ base_ch=64,
+ parsing_ch=19,
+ res_depth=10,
+ relu_type='LeakyReLU',
+ norm_type='bn',
+ ch_range=[32, 256]):
+ super().__init__()
+ self.res_depth = res_depth
+ act_args = {'norm_type': norm_type, 'relu_type': relu_type}
+ min_ch, max_ch = ch_range
+
+ ch_clip = lambda x: max(min_ch, min(x, max_ch)) # noqa: E731
+ min_feat_size = min(in_size, min_feat_size)
+
+ down_steps = int(np.log2(in_size // min_feat_size))
+ up_steps = int(np.log2(out_size // min_feat_size))
+
+ # =============== define encoder-body-decoder ====================
+ self.encoder = []
+ self.encoder.append(ConvLayer(3, base_ch, 3, 1))
+ head_ch = base_ch
+ for i in range(down_steps):
+ cin, cout = ch_clip(head_ch), ch_clip(head_ch * 2)
+ self.encoder.append(ResidualBlock(cin, cout, scale='down', **act_args))
+ head_ch = head_ch * 2
+
+ self.body = []
+ for i in range(res_depth):
+ self.body.append(ResidualBlock(ch_clip(head_ch), ch_clip(head_ch), **act_args))
+
+ self.decoder = []
+ for i in range(up_steps):
+ cin, cout = ch_clip(head_ch), ch_clip(head_ch // 2)
+ self.decoder.append(ResidualBlock(cin, cout, scale='up', **act_args))
+ head_ch = head_ch // 2
+
+ self.encoder = nn.Sequential(*self.encoder)
+ self.body = nn.Sequential(*self.body)
+ self.decoder = nn.Sequential(*self.decoder)
+ self.out_img_conv = ConvLayer(ch_clip(head_ch), 3)
+ self.out_mask_conv = ConvLayer(ch_clip(head_ch), parsing_ch)
+
+ def forward(self, x):
+ feat = self.encoder(x)
+ x = feat + self.body(feat)
+ x = self.decoder(x)
+ out_img = self.out_img_conv(x)
+ out_mask = self.out_mask_conv(x)
+ return out_mask, out_img
diff --git a/CodeFormer/facelib/parsing/resnet.py b/CodeFormer/facelib/parsing/resnet.py
new file mode 100644
index 0000000000000000000000000000000000000000..fec8e82cf64469fb51be21ad5130217052addbda
--- /dev/null
+++ b/CodeFormer/facelib/parsing/resnet.py
@@ -0,0 +1,69 @@
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+def conv3x3(in_planes, out_planes, stride=1):
+ """3x3 convolution with padding"""
+ return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
+
+
+class BasicBlock(nn.Module):
+
+ def __init__(self, in_chan, out_chan, stride=1):
+ super(BasicBlock, self).__init__()
+ self.conv1 = conv3x3(in_chan, out_chan, stride)
+ self.bn1 = nn.BatchNorm2d(out_chan)
+ self.conv2 = conv3x3(out_chan, out_chan)
+ self.bn2 = nn.BatchNorm2d(out_chan)
+ self.relu = nn.ReLU(inplace=True)
+ self.downsample = None
+ if in_chan != out_chan or stride != 1:
+ self.downsample = nn.Sequential(
+ nn.Conv2d(in_chan, out_chan, kernel_size=1, stride=stride, bias=False),
+ nn.BatchNorm2d(out_chan),
+ )
+
+ def forward(self, x):
+ residual = self.conv1(x)
+ residual = F.relu(self.bn1(residual))
+ residual = self.conv2(residual)
+ residual = self.bn2(residual)
+
+ shortcut = x
+ if self.downsample is not None:
+ shortcut = self.downsample(x)
+
+ out = shortcut + residual
+ out = self.relu(out)
+ return out
+
+
+def create_layer_basic(in_chan, out_chan, bnum, stride=1):
+ layers = [BasicBlock(in_chan, out_chan, stride=stride)]
+ for i in range(bnum - 1):
+ layers.append(BasicBlock(out_chan, out_chan, stride=1))
+ return nn.Sequential(*layers)
+
+
+class ResNet18(nn.Module):
+
+ def __init__(self):
+ super(ResNet18, self).__init__()
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
+ self.bn1 = nn.BatchNorm2d(64)
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
+ self.layer1 = create_layer_basic(64, 64, bnum=2, stride=1)
+ self.layer2 = create_layer_basic(64, 128, bnum=2, stride=2)
+ self.layer3 = create_layer_basic(128, 256, bnum=2, stride=2)
+ self.layer4 = create_layer_basic(256, 512, bnum=2, stride=2)
+
+ def forward(self, x):
+ x = self.conv1(x)
+ x = F.relu(self.bn1(x))
+ x = self.maxpool(x)
+
+ x = self.layer1(x)
+ feat8 = self.layer2(x) # 1/8
+ feat16 = self.layer3(feat8) # 1/16
+ feat32 = self.layer4(feat16) # 1/32
+ return feat8, feat16, feat32
diff --git a/CodeFormer/facelib/utils/__init__.py b/CodeFormer/facelib/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..f03b1c2bafcd7759cb7e8722a0c6715f201a46dc
--- /dev/null
+++ b/CodeFormer/facelib/utils/__init__.py
@@ -0,0 +1,7 @@
+from .face_utils import align_crop_face_landmarks, compute_increased_bbox, get_valid_bboxes, paste_face_back
+from .misc import img2tensor, load_file_from_url, download_pretrained_models, scandir
+
+__all__ = [
+ 'align_crop_face_landmarks', 'compute_increased_bbox', 'get_valid_bboxes', 'load_file_from_url',
+ 'download_pretrained_models', 'paste_face_back', 'img2tensor', 'scandir'
+]
diff --git a/CodeFormer/facelib/utils/face_restoration_helper.py b/CodeFormer/facelib/utils/face_restoration_helper.py
new file mode 100644
index 0000000000000000000000000000000000000000..9b6ab60e226f40a962f09a2b7796c9bb6081ccf8
--- /dev/null
+++ b/CodeFormer/facelib/utils/face_restoration_helper.py
@@ -0,0 +1,525 @@
+import cv2
+import numpy as np
+import os
+import torch
+from torchvision.transforms.functional import normalize
+
+from facelib.detection import init_detection_model
+from facelib.parsing import init_parsing_model
+from facelib.utils.misc import img2tensor, imwrite, is_gray, bgr2gray, adain_npy
+from basicsr.utils.download_util import load_file_from_url
+from basicsr.utils.misc import get_device
+
+dlib_model_url = {
+ 'face_detector': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/mmod_human_face_detector-4cb19393.dat',
+ 'shape_predictor_5': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/shape_predictor_5_face_landmarks-c4b1e980.dat'
+}
+
+def get_largest_face(det_faces, h, w):
+
+ def get_location(val, length):
+ if val < 0:
+ return 0
+ elif val > length:
+ return length
+ else:
+ return val
+
+ face_areas = []
+ for det_face in det_faces:
+ left = get_location(det_face[0], w)
+ right = get_location(det_face[2], w)
+ top = get_location(det_face[1], h)
+ bottom = get_location(det_face[3], h)
+ face_area = (right - left) * (bottom - top)
+ face_areas.append(face_area)
+ largest_idx = face_areas.index(max(face_areas))
+ return det_faces[largest_idx], largest_idx
+
+
+def get_center_face(det_faces, h=0, w=0, center=None):
+ if center is not None:
+ center = np.array(center)
+ else:
+ center = np.array([w / 2, h / 2])
+ center_dist = []
+ for det_face in det_faces:
+ face_center = np.array([(det_face[0] + det_face[2]) / 2, (det_face[1] + det_face[3]) / 2])
+ dist = np.linalg.norm(face_center - center)
+ center_dist.append(dist)
+ center_idx = center_dist.index(min(center_dist))
+ return det_faces[center_idx], center_idx
+
+
+class FaceRestoreHelper(object):
+ """Helper for the face restoration pipeline (base class)."""
+
+ def __init__(self,
+ upscale_factor,
+ face_size=512,
+ crop_ratio=(1, 1),
+ det_model='retinaface_resnet50',
+ save_ext='png',
+ template_3points=False,
+ pad_blur=False,
+ use_parse=False,
+ device=None):
+ self.template_3points = template_3points # improve robustness
+ self.upscale_factor = int(upscale_factor)
+ # the cropped face ratio based on the square face
+ self.crop_ratio = crop_ratio # (h, w)
+ assert (self.crop_ratio[0] >= 1 and self.crop_ratio[1] >= 1), 'crop ration only supports >=1'
+ self.face_size = (int(face_size * self.crop_ratio[1]), int(face_size * self.crop_ratio[0]))
+ self.det_model = det_model
+
+ if self.det_model == 'dlib':
+ # standard 5 landmarks for FFHQ faces with 1024 x 1024
+ self.face_template = np.array([[686.77227723, 488.62376238], [586.77227723, 493.59405941],
+ [337.91089109, 488.38613861], [437.95049505, 493.51485149],
+ [513.58415842, 678.5049505]])
+ self.face_template = self.face_template / (1024 // face_size)
+ elif self.template_3points:
+ self.face_template = np.array([[192, 240], [319, 240], [257, 371]])
+ else:
+ # standard 5 landmarks for FFHQ faces with 512 x 512
+ # facexlib
+ self.face_template = np.array([[192.98138, 239.94708], [318.90277, 240.1936], [256.63416, 314.01935],
+ [201.26117, 371.41043], [313.08905, 371.15118]])
+
+ # dlib: left_eye: 36:41 right_eye: 42:47 nose: 30,32,33,34 left mouth corner: 48 right mouth corner: 54
+ # self.face_template = np.array([[193.65928, 242.98541], [318.32558, 243.06108], [255.67984, 328.82894],
+ # [198.22603, 372.82502], [313.91018, 372.75659]])
+
+ self.face_template = self.face_template * (face_size / 512.0)
+ if self.crop_ratio[0] > 1:
+ self.face_template[:, 1] += face_size * (self.crop_ratio[0] - 1) / 2
+ if self.crop_ratio[1] > 1:
+ self.face_template[:, 0] += face_size * (self.crop_ratio[1] - 1) / 2
+ self.save_ext = save_ext
+ self.pad_blur = pad_blur
+ if self.pad_blur is True:
+ self.template_3points = False
+
+ self.all_landmarks_5 = []
+ self.det_faces = []
+ self.affine_matrices = []
+ self.inverse_affine_matrices = []
+ self.cropped_faces = []
+ self.restored_faces = []
+ self.pad_input_imgs = []
+
+ if device is None:
+ # self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+ self.device = get_device()
+ else:
+ self.device = device
+
+ # init face detection model
+ if self.det_model == 'dlib':
+ self.face_detector, self.shape_predictor_5 = self.init_dlib(dlib_model_url['face_detector'], dlib_model_url['shape_predictor_5'])
+ else:
+ self.face_detector = init_detection_model(det_model, half=False, device=self.device)
+
+ # init face parsing model
+ self.use_parse = use_parse
+ self.face_parse = init_parsing_model(model_name='parsenet', device=self.device)
+
+ def set_upscale_factor(self, upscale_factor):
+ self.upscale_factor = upscale_factor
+
+ def read_image(self, img):
+ """img can be image path or cv2 loaded image."""
+ # self.input_img is Numpy array, (h, w, c), BGR, uint8, [0, 255]
+ if isinstance(img, str):
+ img = cv2.imread(img)
+
+ if np.max(img) > 256: # 16-bit image
+ img = img / 65535 * 255
+ if len(img.shape) == 2: # gray image
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
+ elif img.shape[2] == 4: # BGRA image with alpha channel
+ img = img[:, :, 0:3]
+
+ self.input_img = img
+ self.is_gray = is_gray(img, threshold=10)
+ if self.is_gray:
+ print('Grayscale input: True')
+
+ if min(self.input_img.shape[:2])<512:
+ f = 512.0/min(self.input_img.shape[:2])
+ self.input_img = cv2.resize(self.input_img, (0,0), fx=f, fy=f, interpolation=cv2.INTER_LINEAR)
+
+ def init_dlib(self, detection_path, landmark5_path):
+ """Initialize the dlib detectors and predictors."""
+ try:
+ import dlib
+ except ImportError:
+ print('Please install dlib by running:' 'conda install -c conda-forge dlib')
+ detection_path = load_file_from_url(url=detection_path, model_dir='weights/dlib', progress=True, file_name=None)
+ landmark5_path = load_file_from_url(url=landmark5_path, model_dir='weights/dlib', progress=True, file_name=None)
+ face_detector = dlib.cnn_face_detection_model_v1(detection_path)
+ shape_predictor_5 = dlib.shape_predictor(landmark5_path)
+ return face_detector, shape_predictor_5
+
+ def get_face_landmarks_5_dlib(self,
+ only_keep_largest=False,
+ scale=1):
+ det_faces = self.face_detector(self.input_img, scale)
+
+ if len(det_faces) == 0:
+ print('No face detected. Try to increase upsample_num_times.')
+ return 0
+ else:
+ if only_keep_largest:
+ print('Detect several faces and only keep the largest.')
+ face_areas = []
+ for i in range(len(det_faces)):
+ face_area = (det_faces[i].rect.right() - det_faces[i].rect.left()) * (
+ det_faces[i].rect.bottom() - det_faces[i].rect.top())
+ face_areas.append(face_area)
+ largest_idx = face_areas.index(max(face_areas))
+ self.det_faces = [det_faces[largest_idx]]
+ else:
+ self.det_faces = det_faces
+
+ if len(self.det_faces) == 0:
+ return 0
+
+ for face in self.det_faces:
+ shape = self.shape_predictor_5(self.input_img, face.rect)
+ landmark = np.array([[part.x, part.y] for part in shape.parts()])
+ self.all_landmarks_5.append(landmark)
+
+ return len(self.all_landmarks_5)
+
+
+ def get_face_landmarks_5(self,
+ only_keep_largest=False,
+ only_center_face=False,
+ resize=None,
+ blur_ratio=0.01,
+ eye_dist_threshold=None):
+ if self.det_model == 'dlib':
+ return self.get_face_landmarks_5_dlib(only_keep_largest)
+
+ if resize is None:
+ scale = 1
+ input_img = self.input_img
+ else:
+ h, w = self.input_img.shape[0:2]
+ scale = resize / min(h, w)
+ # scale = max(1, scale) # always scale up; comment this out for HD images, e.g., AIGC faces.
+ h, w = int(h * scale), int(w * scale)
+ interp = cv2.INTER_AREA if scale < 1 else cv2.INTER_LINEAR
+ input_img = cv2.resize(self.input_img, (w, h), interpolation=interp)
+
+ with torch.no_grad():
+ bboxes = self.face_detector.detect_faces(input_img)
+
+ if bboxes is None or bboxes.shape[0] == 0:
+ return 0
+ else:
+ bboxes = bboxes / scale
+
+ for bbox in bboxes:
+ # remove faces with too small eye distance: side faces or too small faces
+ eye_dist = np.linalg.norm([bbox[6] - bbox[8], bbox[7] - bbox[9]])
+ if eye_dist_threshold is not None and (eye_dist < eye_dist_threshold):
+ continue
+
+ if self.template_3points:
+ landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 11, 2)])
+ else:
+ landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 15, 2)])
+ self.all_landmarks_5.append(landmark)
+ self.det_faces.append(bbox[0:5])
+
+ if len(self.det_faces) == 0:
+ return 0
+ if only_keep_largest:
+ h, w, _ = self.input_img.shape
+ self.det_faces, largest_idx = get_largest_face(self.det_faces, h, w)
+ self.all_landmarks_5 = [self.all_landmarks_5[largest_idx]]
+ elif only_center_face:
+ h, w, _ = self.input_img.shape
+ self.det_faces, center_idx = get_center_face(self.det_faces, h, w)
+ self.all_landmarks_5 = [self.all_landmarks_5[center_idx]]
+
+ # pad blurry images
+ if self.pad_blur:
+ self.pad_input_imgs = []
+ for landmarks in self.all_landmarks_5:
+ # get landmarks
+ eye_left = landmarks[0, :]
+ eye_right = landmarks[1, :]
+ eye_avg = (eye_left + eye_right) * 0.5
+ mouth_avg = (landmarks[3, :] + landmarks[4, :]) * 0.5
+ eye_to_eye = eye_right - eye_left
+ eye_to_mouth = mouth_avg - eye_avg
+
+ # Get the oriented crop rectangle
+ # x: half width of the oriented crop rectangle
+ x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
+ # - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise
+ # norm with the hypotenuse: get the direction
+ x /= np.hypot(*x) # get the hypotenuse of a right triangle
+ rect_scale = 1.5
+ x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale)
+ # y: half height of the oriented crop rectangle
+ y = np.flipud(x) * [-1, 1]
+
+ # c: center
+ c = eye_avg + eye_to_mouth * 0.1
+ # quad: (left_top, left_bottom, right_bottom, right_top)
+ quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
+ # qsize: side length of the square
+ qsize = np.hypot(*x) * 2
+ border = max(int(np.rint(qsize * 0.1)), 3)
+
+ # get pad
+ # pad: (width_left, height_top, width_right, height_bottom)
+ pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
+ int(np.ceil(max(quad[:, 1]))))
+ pad = [
+ max(-pad[0] + border, 1),
+ max(-pad[1] + border, 1),
+ max(pad[2] - self.input_img.shape[0] + border, 1),
+ max(pad[3] - self.input_img.shape[1] + border, 1)
+ ]
+
+ if max(pad) > 1:
+ # pad image
+ pad_img = np.pad(self.input_img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
+ # modify landmark coords
+ landmarks[:, 0] += pad[0]
+ landmarks[:, 1] += pad[1]
+ # blur pad images
+ h, w, _ = pad_img.shape
+ y, x, _ = np.ogrid[:h, :w, :1]
+ mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0],
+ np.float32(w - 1 - x) / pad[2]),
+ 1.0 - np.minimum(np.float32(y) / pad[1],
+ np.float32(h - 1 - y) / pad[3]))
+ blur = int(qsize * blur_ratio)
+ if blur % 2 == 0:
+ blur += 1
+ blur_img = cv2.boxFilter(pad_img, 0, ksize=(blur, blur))
+ # blur_img = cv2.GaussianBlur(pad_img, (blur, blur), 0)
+
+ pad_img = pad_img.astype('float32')
+ pad_img += (blur_img - pad_img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
+ pad_img += (np.median(pad_img, axis=(0, 1)) - pad_img) * np.clip(mask, 0.0, 1.0)
+ pad_img = np.clip(pad_img, 0, 255) # float32, [0, 255]
+ self.pad_input_imgs.append(pad_img)
+ else:
+ self.pad_input_imgs.append(np.copy(self.input_img))
+
+ return len(self.all_landmarks_5)
+
+ def align_warp_face(self, save_cropped_path=None, border_mode='constant'):
+ """Align and warp faces with face template.
+ """
+ if self.pad_blur:
+ assert len(self.pad_input_imgs) == len(
+ self.all_landmarks_5), f'Mismatched samples: {len(self.pad_input_imgs)} and {len(self.all_landmarks_5)}'
+ for idx, landmark in enumerate(self.all_landmarks_5):
+ # use 5 landmarks to get affine matrix
+ # use cv2.LMEDS method for the equivalence to skimage transform
+ # ref: https://blog.csdn.net/yichxi/article/details/115827338
+ affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template, method=cv2.LMEDS)[0]
+ self.affine_matrices.append(affine_matrix)
+ # warp and crop faces
+ if border_mode == 'constant':
+ border_mode = cv2.BORDER_CONSTANT
+ elif border_mode == 'reflect101':
+ border_mode = cv2.BORDER_REFLECT101
+ elif border_mode == 'reflect':
+ border_mode = cv2.BORDER_REFLECT
+ if self.pad_blur:
+ input_img = self.pad_input_imgs[idx]
+ else:
+ input_img = self.input_img
+ cropped_face = cv2.warpAffine(
+ input_img, affine_matrix, self.face_size, borderMode=border_mode, borderValue=(135, 133, 132)) # gray
+ self.cropped_faces.append(cropped_face)
+ # save the cropped face
+ if save_cropped_path is not None:
+ path = os.path.splitext(save_cropped_path)[0]
+ save_path = f'{path}_{idx:02d}.{self.save_ext}'
+ imwrite(cropped_face, save_path)
+
+ def get_inverse_affine(self, save_inverse_affine_path=None):
+ """Get inverse affine matrix."""
+ for idx, affine_matrix in enumerate(self.affine_matrices):
+ inverse_affine = cv2.invertAffineTransform(affine_matrix)
+ inverse_affine *= self.upscale_factor
+ self.inverse_affine_matrices.append(inverse_affine)
+ # save inverse affine matrices
+ if save_inverse_affine_path is not None:
+ path, _ = os.path.splitext(save_inverse_affine_path)
+ save_path = f'{path}_{idx:02d}.pth'
+ torch.save(inverse_affine, save_path)
+
+
+ def add_restored_face(self, restored_face, input_face=None):
+ if self.is_gray:
+ restored_face = bgr2gray(restored_face) # convert img into grayscale
+ if input_face is not None:
+ restored_face = adain_npy(restored_face, input_face) # transfer the color
+ self.restored_faces.append(restored_face)
+
+
+ def paste_faces_to_input_image(self, save_path=None, upsample_img=None, draw_box=False, face_upsampler=None):
+ h, w, _ = self.input_img.shape
+ h_up, w_up = int(h * self.upscale_factor), int(w * self.upscale_factor)
+
+ if upsample_img is None:
+ # simply resize the background
+ # upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
+ upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LINEAR)
+ else:
+ upsample_img = cv2.resize(upsample_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
+
+ assert len(self.restored_faces) == len(
+ self.inverse_affine_matrices), ('length of restored_faces and affine_matrices are different.')
+
+ inv_mask_borders = []
+ for restored_face, inverse_affine in zip(self.restored_faces, self.inverse_affine_matrices):
+ if face_upsampler is not None:
+ restored_face = face_upsampler.enhance(restored_face, outscale=self.upscale_factor)[0]
+ inverse_affine /= self.upscale_factor
+ inverse_affine[:, 2] *= self.upscale_factor
+ face_size = (self.face_size[0]*self.upscale_factor, self.face_size[1]*self.upscale_factor)
+ else:
+ # Add an offset to inverse affine matrix, for more precise back alignment
+ if self.upscale_factor > 1:
+ extra_offset = 0.5 * self.upscale_factor
+ else:
+ extra_offset = 0
+ inverse_affine[:, 2] += extra_offset
+ face_size = self.face_size
+ inv_restored = cv2.warpAffine(restored_face, inverse_affine, (w_up, h_up))
+
+ # if draw_box or not self.use_parse: # use square parse maps
+ # mask = np.ones(face_size, dtype=np.float32)
+ # inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
+ # # remove the black borders
+ # inv_mask_erosion = cv2.erode(
+ # inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8))
+ # pasted_face = inv_mask_erosion[:, :, None] * inv_restored
+ # total_face_area = np.sum(inv_mask_erosion) # // 3
+ # # add border
+ # if draw_box:
+ # h, w = face_size
+ # mask_border = np.ones((h, w, 3), dtype=np.float32)
+ # border = int(1400/np.sqrt(total_face_area))
+ # mask_border[border:h-border, border:w-border,:] = 0
+ # inv_mask_border = cv2.warpAffine(mask_border, inverse_affine, (w_up, h_up))
+ # inv_mask_borders.append(inv_mask_border)
+ # if not self.use_parse:
+ # # compute the fusion edge based on the area of face
+ # w_edge = int(total_face_area**0.5) // 20
+ # erosion_radius = w_edge * 2
+ # inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
+ # blur_size = w_edge * 2
+ # inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
+ # if len(upsample_img.shape) == 2: # upsample_img is gray image
+ # upsample_img = upsample_img[:, :, None]
+ # inv_soft_mask = inv_soft_mask[:, :, None]
+
+ # always use square mask
+ mask = np.ones(face_size, dtype=np.float32)
+ inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
+ # remove the black borders
+ inv_mask_erosion = cv2.erode(
+ inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8))
+ pasted_face = inv_mask_erosion[:, :, None] * inv_restored
+ total_face_area = np.sum(inv_mask_erosion) # // 3
+ # add border
+ if draw_box:
+ h, w = face_size
+ mask_border = np.ones((h, w, 3), dtype=np.float32)
+ border = int(1400/np.sqrt(total_face_area))
+ mask_border[border:h-border, border:w-border,:] = 0
+ inv_mask_border = cv2.warpAffine(mask_border, inverse_affine, (w_up, h_up))
+ inv_mask_borders.append(inv_mask_border)
+ # compute the fusion edge based on the area of face
+ w_edge = int(total_face_area**0.5) // 20
+ erosion_radius = w_edge * 2
+ inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
+ blur_size = w_edge * 2
+ inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
+ if len(upsample_img.shape) == 2: # upsample_img is gray image
+ upsample_img = upsample_img[:, :, None]
+ inv_soft_mask = inv_soft_mask[:, :, None]
+
+ # parse mask
+ if self.use_parse:
+ # inference
+ face_input = cv2.resize(restored_face, (512, 512), interpolation=cv2.INTER_LINEAR)
+ face_input = img2tensor(face_input.astype('float32') / 255., bgr2rgb=True, float32=True)
+ normalize(face_input, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
+ face_input = torch.unsqueeze(face_input, 0).to(self.device)
+ with torch.no_grad():
+ out = self.face_parse(face_input)[0]
+ out = out.argmax(dim=1).squeeze().cpu().numpy()
+
+ parse_mask = np.zeros(out.shape)
+ MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0]
+ for idx, color in enumerate(MASK_COLORMAP):
+ parse_mask[out == idx] = color
+ # blur the mask
+ parse_mask = cv2.GaussianBlur(parse_mask, (101, 101), 11)
+ parse_mask = cv2.GaussianBlur(parse_mask, (101, 101), 11)
+ # remove the black borders
+ thres = 10
+ parse_mask[:thres, :] = 0
+ parse_mask[-thres:, :] = 0
+ parse_mask[:, :thres] = 0
+ parse_mask[:, -thres:] = 0
+ parse_mask = parse_mask / 255.
+
+ parse_mask = cv2.resize(parse_mask, face_size)
+ parse_mask = cv2.warpAffine(parse_mask, inverse_affine, (w_up, h_up), flags=3)
+ inv_soft_parse_mask = parse_mask[:, :, None]
+ # pasted_face = inv_restored
+ fuse_mask = (inv_soft_parse_mask 256: # 16-bit image
+ upsample_img = upsample_img.astype(np.uint16)
+ else:
+ upsample_img = upsample_img.astype(np.uint8)
+
+ # draw bounding box
+ if draw_box:
+ # upsample_input_img = cv2.resize(input_img, (w_up, h_up))
+ img_color = np.ones([*upsample_img.shape], dtype=np.float32)
+ img_color[:,:,0] = 0
+ img_color[:,:,1] = 255
+ img_color[:,:,2] = 0
+ for inv_mask_border in inv_mask_borders:
+ upsample_img = inv_mask_border * img_color + (1 - inv_mask_border) * upsample_img
+ # upsample_input_img = inv_mask_border * img_color + (1 - inv_mask_border) * upsample_input_img
+
+ if save_path is not None:
+ path = os.path.splitext(save_path)[0]
+ save_path = f'{path}.{self.save_ext}'
+ imwrite(upsample_img, save_path)
+ return upsample_img
+
+ def clean_all(self):
+ self.all_landmarks_5 = []
+ self.restored_faces = []
+ self.affine_matrices = []
+ self.cropped_faces = []
+ self.inverse_affine_matrices = []
+ self.det_faces = []
+ self.pad_input_imgs = []
diff --git a/CodeFormer/facelib/utils/face_utils.py b/CodeFormer/facelib/utils/face_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..f1474a2a4419b6b62fab8a919ef805b802556464
--- /dev/null
+++ b/CodeFormer/facelib/utils/face_utils.py
@@ -0,0 +1,248 @@
+import cv2
+import numpy as np
+import torch
+
+
+def compute_increased_bbox(bbox, increase_area, preserve_aspect=True):
+ left, top, right, bot = bbox
+ width = right - left
+ height = bot - top
+
+ if preserve_aspect:
+ width_increase = max(increase_area, ((1 + 2 * increase_area) * height - width) / (2 * width))
+ height_increase = max(increase_area, ((1 + 2 * increase_area) * width - height) / (2 * height))
+ else:
+ width_increase = height_increase = increase_area
+ left = int(left - width_increase * width)
+ top = int(top - height_increase * height)
+ right = int(right + width_increase * width)
+ bot = int(bot + height_increase * height)
+ return (left, top, right, bot)
+
+
+def get_valid_bboxes(bboxes, h, w):
+ left = max(bboxes[0], 0)
+ top = max(bboxes[1], 0)
+ right = min(bboxes[2], w)
+ bottom = min(bboxes[3], h)
+ return (left, top, right, bottom)
+
+
+def align_crop_face_landmarks(img,
+ landmarks,
+ output_size,
+ transform_size=None,
+ enable_padding=True,
+ return_inverse_affine=False,
+ shrink_ratio=(1, 1)):
+ """Align and crop face with landmarks.
+
+ The output_size and transform_size are based on width. The height is
+ adjusted based on shrink_ratio_h/shring_ration_w.
+
+ Modified from:
+ https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py
+
+ Args:
+ img (Numpy array): Input image.
+ landmarks (Numpy array): 5 or 68 or 98 landmarks.
+ output_size (int): Output face size.
+ transform_size (ing): Transform size. Usually the four time of
+ output_size.
+ enable_padding (float): Default: True.
+ shrink_ratio (float | tuple[float] | list[float]): Shring the whole
+ face for height and width (crop larger area). Default: (1, 1).
+
+ Returns:
+ (Numpy array): Cropped face.
+ """
+ lm_type = 'retinaface_5' # Options: dlib_5, retinaface_5
+
+ if isinstance(shrink_ratio, (float, int)):
+ shrink_ratio = (shrink_ratio, shrink_ratio)
+ if transform_size is None:
+ transform_size = output_size * 4
+
+ # Parse landmarks
+ lm = np.array(landmarks)
+ if lm.shape[0] == 5 and lm_type == 'retinaface_5':
+ eye_left = lm[0]
+ eye_right = lm[1]
+ mouth_avg = (lm[3] + lm[4]) * 0.5
+ elif lm.shape[0] == 5 and lm_type == 'dlib_5':
+ lm_eye_left = lm[2:4]
+ lm_eye_right = lm[0:2]
+ eye_left = np.mean(lm_eye_left, axis=0)
+ eye_right = np.mean(lm_eye_right, axis=0)
+ mouth_avg = lm[4]
+ elif lm.shape[0] == 68:
+ lm_eye_left = lm[36:42]
+ lm_eye_right = lm[42:48]
+ eye_left = np.mean(lm_eye_left, axis=0)
+ eye_right = np.mean(lm_eye_right, axis=0)
+ mouth_avg = (lm[48] + lm[54]) * 0.5
+ elif lm.shape[0] == 98:
+ lm_eye_left = lm[60:68]
+ lm_eye_right = lm[68:76]
+ eye_left = np.mean(lm_eye_left, axis=0)
+ eye_right = np.mean(lm_eye_right, axis=0)
+ mouth_avg = (lm[76] + lm[82]) * 0.5
+
+ eye_avg = (eye_left + eye_right) * 0.5
+ eye_to_eye = eye_right - eye_left
+ eye_to_mouth = mouth_avg - eye_avg
+
+ # Get the oriented crop rectangle
+ # x: half width of the oriented crop rectangle
+ x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
+ # - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise
+ # norm with the hypotenuse: get the direction
+ x /= np.hypot(*x) # get the hypotenuse of a right triangle
+ rect_scale = 1 # TODO: you can edit it to get larger rect
+ x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale)
+ # y: half height of the oriented crop rectangle
+ y = np.flipud(x) * [-1, 1]
+
+ x *= shrink_ratio[1] # width
+ y *= shrink_ratio[0] # height
+
+ # c: center
+ c = eye_avg + eye_to_mouth * 0.1
+ # quad: (left_top, left_bottom, right_bottom, right_top)
+ quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
+ # qsize: side length of the square
+ qsize = np.hypot(*x) * 2
+
+ quad_ori = np.copy(quad)
+ # Shrink, for large face
+ # TODO: do we really need shrink
+ shrink = int(np.floor(qsize / output_size * 0.5))
+ if shrink > 1:
+ h, w = img.shape[0:2]
+ rsize = (int(np.rint(float(w) / shrink)), int(np.rint(float(h) / shrink)))
+ img = cv2.resize(img, rsize, interpolation=cv2.INTER_AREA)
+ quad /= shrink
+ qsize /= shrink
+
+ # Crop
+ h, w = img.shape[0:2]
+ border = max(int(np.rint(qsize * 0.1)), 3)
+ crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
+ int(np.ceil(max(quad[:, 1]))))
+ crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, w), min(crop[3] + border, h))
+ if crop[2] - crop[0] < w or crop[3] - crop[1] < h:
+ img = img[crop[1]:crop[3], crop[0]:crop[2], :]
+ quad -= crop[0:2]
+
+ # Pad
+ # pad: (width_left, height_top, width_right, height_bottom)
+ h, w = img.shape[0:2]
+ pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
+ int(np.ceil(max(quad[:, 1]))))
+ pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - w + border, 0), max(pad[3] - h + border, 0))
+ if enable_padding and max(pad) > border - 4:
+ pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
+ img = np.pad(img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
+ h, w = img.shape[0:2]
+ y, x, _ = np.ogrid[:h, :w, :1]
+ mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0],
+ np.float32(w - 1 - x) / pad[2]),
+ 1.0 - np.minimum(np.float32(y) / pad[1],
+ np.float32(h - 1 - y) / pad[3]))
+ blur = int(qsize * 0.02)
+ if blur % 2 == 0:
+ blur += 1
+ blur_img = cv2.boxFilter(img, 0, ksize=(blur, blur))
+
+ img = img.astype('float32')
+ img += (blur_img - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
+ img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
+ img = np.clip(img, 0, 255) # float32, [0, 255]
+ quad += pad[:2]
+
+ # Transform use cv2
+ h_ratio = shrink_ratio[0] / shrink_ratio[1]
+ dst_h, dst_w = int(transform_size * h_ratio), transform_size
+ template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]])
+ # use cv2.LMEDS method for the equivalence to skimage transform
+ # ref: https://blog.csdn.net/yichxi/article/details/115827338
+ affine_matrix = cv2.estimateAffinePartial2D(quad, template, method=cv2.LMEDS)[0]
+ cropped_face = cv2.warpAffine(
+ img, affine_matrix, (dst_w, dst_h), borderMode=cv2.BORDER_CONSTANT, borderValue=(135, 133, 132)) # gray
+
+ if output_size < transform_size:
+ cropped_face = cv2.resize(
+ cropped_face, (output_size, int(output_size * h_ratio)), interpolation=cv2.INTER_LINEAR)
+
+ if return_inverse_affine:
+ dst_h, dst_w = int(output_size * h_ratio), output_size
+ template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]])
+ # use cv2.LMEDS method for the equivalence to skimage transform
+ # ref: https://blog.csdn.net/yichxi/article/details/115827338
+ affine_matrix = cv2.estimateAffinePartial2D(
+ quad_ori, np.array([[0, 0], [0, output_size], [dst_w, dst_h], [dst_w, 0]]), method=cv2.LMEDS)[0]
+ inverse_affine = cv2.invertAffineTransform(affine_matrix)
+ else:
+ inverse_affine = None
+ return cropped_face, inverse_affine
+
+
+def paste_face_back(img, face, inverse_affine):
+ h, w = img.shape[0:2]
+ face_h, face_w = face.shape[0:2]
+ inv_restored = cv2.warpAffine(face, inverse_affine, (w, h))
+ mask = np.ones((face_h, face_w, 3), dtype=np.float32)
+ inv_mask = cv2.warpAffine(mask, inverse_affine, (w, h))
+ # remove the black borders
+ inv_mask_erosion = cv2.erode(inv_mask, np.ones((2, 2), np.uint8))
+ inv_restored_remove_border = inv_mask_erosion * inv_restored
+ total_face_area = np.sum(inv_mask_erosion) // 3
+ # compute the fusion edge based on the area of face
+ w_edge = int(total_face_area**0.5) // 20
+ erosion_radius = w_edge * 2
+ inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
+ blur_size = w_edge * 2
+ inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
+ img = inv_soft_mask * inv_restored_remove_border + (1 - inv_soft_mask) * img
+ # float32, [0, 255]
+ return img
+
+
+if __name__ == '__main__':
+ import os
+
+ from facelib.detection import init_detection_model
+ from facelib.utils.face_restoration_helper import get_largest_face
+
+ img_path = '/home/wxt/datasets/ffhq/ffhq_wild/00009.png'
+ img_name = os.splitext(os.path.basename(img_path))[0]
+
+ # initialize model
+ det_net = init_detection_model('retinaface_resnet50', half=False)
+ img_ori = cv2.imread(img_path)
+ h, w = img_ori.shape[0:2]
+ # if larger than 800, scale it
+ scale = max(h / 800, w / 800)
+ if scale > 1:
+ img = cv2.resize(img_ori, (int(w / scale), int(h / scale)), interpolation=cv2.INTER_LINEAR)
+
+ with torch.no_grad():
+ bboxes = det_net.detect_faces(img, 0.97)
+ if scale > 1:
+ bboxes *= scale # the score is incorrect
+ bboxes = get_largest_face(bboxes, h, w)[0]
+
+ landmarks = np.array([[bboxes[i], bboxes[i + 1]] for i in range(5, 15, 2)])
+
+ cropped_face, inverse_affine = align_crop_face_landmarks(
+ img_ori,
+ landmarks,
+ output_size=512,
+ transform_size=None,
+ enable_padding=True,
+ return_inverse_affine=True,
+ shrink_ratio=(1, 1))
+
+ cv2.imwrite(f'tmp/{img_name}_cropeed_face.png', cropped_face)
+ img = paste_face_back(img_ori, cropped_face, inverse_affine)
+ cv2.imwrite(f'tmp/{img_name}_back.png', img)
diff --git a/CodeFormer/facelib/utils/misc.py b/CodeFormer/facelib/utils/misc.py
new file mode 100644
index 0000000000000000000000000000000000000000..1875579294e15e20abccd9d719a7ca4fe6d43cd4
--- /dev/null
+++ b/CodeFormer/facelib/utils/misc.py
@@ -0,0 +1,202 @@
+import cv2
+import os
+import os.path as osp
+import numpy as np
+from PIL import Image
+import torch
+from torch.hub import download_url_to_file, get_dir
+from urllib.parse import urlparse
+# from basicsr.utils.download_util import download_file_from_google_drive
+
+ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
+
+
+def download_pretrained_models(file_ids, save_path_root):
+ import gdown
+
+ os.makedirs(save_path_root, exist_ok=True)
+
+ for file_name, file_id in file_ids.items():
+ file_url = 'https://drive.google.com/uc?id='+file_id
+ save_path = osp.abspath(osp.join(save_path_root, file_name))
+ if osp.exists(save_path):
+ user_response = input(f'{file_name} already exist. Do you want to cover it? Y/N\n')
+ if user_response.lower() == 'y':
+ print(f'Covering {file_name} to {save_path}')
+ gdown.download(file_url, save_path, quiet=False)
+ # download_file_from_google_drive(file_id, save_path)
+ elif user_response.lower() == 'n':
+ print(f'Skipping {file_name}')
+ else:
+ raise ValueError('Wrong input. Only accepts Y/N.')
+ else:
+ print(f'Downloading {file_name} to {save_path}')
+ gdown.download(file_url, save_path, quiet=False)
+ # download_file_from_google_drive(file_id, save_path)
+
+
+def imwrite(img, file_path, params=None, auto_mkdir=True):
+ """Write image to file.
+
+ Args:
+ img (ndarray): Image array to be written.
+ file_path (str): Image file path.
+ params (None or list): Same as opencv's :func:`imwrite` interface.
+ auto_mkdir (bool): If the parent folder of `file_path` does not exist,
+ whether to create it automatically.
+
+ Returns:
+ bool: Successful or not.
+ """
+ if auto_mkdir:
+ dir_name = os.path.abspath(os.path.dirname(file_path))
+ os.makedirs(dir_name, exist_ok=True)
+ return cv2.imwrite(file_path, img, params)
+
+
+def img2tensor(imgs, bgr2rgb=True, float32=True):
+ """Numpy array to tensor.
+
+ Args:
+ imgs (list[ndarray] | ndarray): Input images.
+ bgr2rgb (bool): Whether to change bgr to rgb.
+ float32 (bool): Whether to change to float32.
+
+ Returns:
+ list[tensor] | tensor: Tensor images. If returned results only have
+ one element, just return tensor.
+ """
+
+ def _totensor(img, bgr2rgb, float32):
+ if img.shape[2] == 3 and bgr2rgb:
+ if img.dtype == 'float64':
+ img = img.astype('float32')
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
+ img = torch.from_numpy(img.transpose(2, 0, 1))
+ if float32:
+ img = img.float()
+ return img
+
+ if isinstance(imgs, list):
+ return [_totensor(img, bgr2rgb, float32) for img in imgs]
+ else:
+ return _totensor(imgs, bgr2rgb, float32)
+
+
+def load_file_from_url(url, model_dir=None, progress=True, file_name=None):
+ """Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py
+ """
+ if model_dir is None:
+ hub_dir = get_dir()
+ model_dir = os.path.join(hub_dir, 'checkpoints')
+
+ os.makedirs(os.path.join(ROOT_DIR, model_dir), exist_ok=True)
+
+ parts = urlparse(url)
+ filename = os.path.basename(parts.path)
+ if file_name is not None:
+ filename = file_name
+ cached_file = os.path.abspath(os.path.join(ROOT_DIR, model_dir, filename))
+ if not os.path.exists(cached_file):
+ print(f'Downloading: "{url}" to {cached_file}\n')
+ download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
+ return cached_file
+
+
+def scandir(dir_path, suffix=None, recursive=False, full_path=False):
+ """Scan a directory to find the interested files.
+ Args:
+ dir_path (str): Path of the directory.
+ suffix (str | tuple(str), optional): File suffix that we are
+ interested in. Default: None.
+ recursive (bool, optional): If set to True, recursively scan the
+ directory. Default: False.
+ full_path (bool, optional): If set to True, include the dir_path.
+ Default: False.
+ Returns:
+ A generator for all the interested files with relative paths.
+ """
+
+ if (suffix is not None) and not isinstance(suffix, (str, tuple)):
+ raise TypeError('"suffix" must be a string or tuple of strings')
+
+ root = dir_path
+
+ def _scandir(dir_path, suffix, recursive):
+ for entry in os.scandir(dir_path):
+ if not entry.name.startswith('.') and entry.is_file():
+ if full_path:
+ return_path = entry.path
+ else:
+ return_path = osp.relpath(entry.path, root)
+
+ if suffix is None:
+ yield return_path
+ elif return_path.endswith(suffix):
+ yield return_path
+ else:
+ if recursive:
+ yield from _scandir(entry.path, suffix=suffix, recursive=recursive)
+ else:
+ continue
+
+ return _scandir(dir_path, suffix=suffix, recursive=recursive)
+
+
+def is_gray(img, threshold=10):
+ img = Image.fromarray(img)
+ if len(img.getbands()) == 1:
+ return True
+ img1 = np.asarray(img.getchannel(channel=0), dtype=np.int16)
+ img2 = np.asarray(img.getchannel(channel=1), dtype=np.int16)
+ img3 = np.asarray(img.getchannel(channel=2), dtype=np.int16)
+ diff1 = (img1 - img2).var()
+ diff2 = (img2 - img3).var()
+ diff3 = (img3 - img1).var()
+ diff_sum = (diff1 + diff2 + diff3) / 3.0
+ if diff_sum <= threshold:
+ return True
+ else:
+ return False
+
+def rgb2gray(img, out_channel=3):
+ r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]
+ gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
+ if out_channel == 3:
+ gray = gray[:,:,np.newaxis].repeat(3, axis=2)
+ return gray
+
+def bgr2gray(img, out_channel=3):
+ b, g, r = img[:,:,0], img[:,:,1], img[:,:,2]
+ gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
+ if out_channel == 3:
+ gray = gray[:,:,np.newaxis].repeat(3, axis=2)
+ return gray
+
+
+def calc_mean_std(feat, eps=1e-5):
+ """
+ Args:
+ feat (numpy): 3D [w h c]s
+ """
+ size = feat.shape
+ assert len(size) == 3, 'The input feature should be 3D tensor.'
+ c = size[2]
+ feat_var = feat.reshape(-1, c).var(axis=0) + eps
+ feat_std = np.sqrt(feat_var).reshape(1, 1, c)
+ feat_mean = feat.reshape(-1, c).mean(axis=0).reshape(1, 1, c)
+ return feat_mean, feat_std
+
+
+def adain_npy(content_feat, style_feat):
+ """Adaptive instance normalization for numpy.
+
+ Args:
+ content_feat (numpy): The input feature.
+ style_feat (numpy): The reference feature.
+ """
+ size = content_feat.shape
+ style_mean, style_std = calc_mean_std(style_feat)
+ content_mean, content_std = calc_mean_std(content_feat)
+ normalized_feat = (content_feat - np.broadcast_to(content_mean, size)) / np.broadcast_to(content_std, size)
+ return normalized_feat * np.broadcast_to(style_std, size) + np.broadcast_to(style_mean, size)
\ No newline at end of file
diff --git a/CodeFormer/inference_codeformer.py b/CodeFormer/inference_codeformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..fbc96d3617bf491d4828d256f91af4583bf26379
--- /dev/null
+++ b/CodeFormer/inference_codeformer.py
@@ -0,0 +1,281 @@
+import os
+import cv2
+import argparse
+import glob
+import torch
+from torchvision.transforms.functional import normalize
+from basicsr.utils import imwrite, img2tensor, tensor2img
+from basicsr.utils.download_util import load_file_from_url
+import torch
+
+def gpu_is_available():
+ return torch.cuda.is_available()
+
+def get_device():
+ return torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+
+from facelib.utils.face_restoration_helper import FaceRestoreHelper
+from facelib.utils.misc import is_gray
+
+from basicsr.utils.registry import ARCH_REGISTRY
+
+pretrain_model_url = {
+ 'restoration': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
+}
+
+def set_realesrgan():
+ from basicsr.archs.rrdbnet_arch import RRDBNet
+ from basicsr.utils.realesrgan_utils import RealESRGANer
+
+ use_half = False
+ if torch.cuda.is_available(): # set False in CPU/MPS mode
+ no_half_gpu_list = ['1650', '1660'] # set False for GPUs that don't support f16
+ if not True in [gpu in torch.cuda.get_device_name(0) for gpu in no_half_gpu_list]:
+ use_half = True
+
+ model = RRDBNet(
+ num_in_ch=3,
+ num_out_ch=3,
+ num_feat=64,
+ num_block=23,
+ num_grow_ch=32,
+ scale=2,
+ )
+ upsampler = RealESRGANer(
+ scale=2,
+ model_path="https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth",
+ model=model,
+ tile=args.bg_tile,
+ tile_pad=40,
+ pre_pad=0,
+ half=use_half
+ )
+
+ if not gpu_is_available(): # CPU
+ import warnings
+ warnings.warn('Running on CPU now! Make sure your PyTorch version matches your CUDA.'
+ 'The unoptimized RealESRGAN is slow on CPU. '
+ 'If you want to disable it, please remove `--bg_upsampler` and `--face_upsample` in command.',
+ category=RuntimeWarning)
+ return upsampler
+
+if __name__ == '__main__':
+ # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+ device = get_device()
+ parser = argparse.ArgumentParser()
+
+ parser.add_argument('-i', '--input_path', type=str, default='./inputs/whole_imgs',
+ help='Input image, video or folder. Default: inputs/whole_imgs')
+ parser.add_argument('-o', '--output_path', type=str, default=None,
+ help='Output folder. Default: results/_')
+ parser.add_argument('-w', '--fidelity_weight', type=float, default=0.5,
+ help='Balance the quality and fidelity. Default: 0.5')
+ parser.add_argument('-s', '--upscale', type=int, default=2,
+ help='The final upsampling scale of the image. Default: 2')
+ parser.add_argument('--has_aligned', action='store_true', help='Input are cropped and aligned faces. Default: False')
+ parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face. Default: False')
+ parser.add_argument('--draw_box', action='store_true', help='Draw the bounding box for the detected faces. Default: False')
+ # large det_model: 'YOLOv5l', 'retinaface_resnet50'
+ # small det_model: 'YOLOv5n', 'retinaface_mobile0.25'
+ parser.add_argument('--detection_model', type=str, default='retinaface_resnet50',
+ help='Face detector. Optional: retinaface_resnet50, retinaface_mobile0.25, YOLOv5l, YOLOv5n, dlib. \
+ Default: retinaface_resnet50')
+ parser.add_argument('--bg_upsampler', type=str, default='None', help='Background upsampler. Optional: realesrgan')
+ parser.add_argument('--face_upsample', action='store_true', help='Face upsampler after enhancement. Default: False')
+ parser.add_argument('--bg_tile', type=int, default=400, help='Tile size for background sampler. Default: 400')
+ parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces. Default: None')
+ parser.add_argument('--save_video_fps', type=float, default=None, help='Frame rate for saving video. Default: None')
+
+ args = parser.parse_args()
+
+ # ------------------------ input & output ------------------------
+ w = args.fidelity_weight
+ input_video = False
+ if args.input_path.endswith(('jpg', 'jpeg', 'png', 'JPG', 'JPEG', 'PNG')): # input single img path
+ input_img_list = [args.input_path]
+ result_root = f'results/test_img_{w}'
+ elif args.input_path.endswith(('mp4', 'mov', 'avi', 'MP4', 'MOV', 'AVI')): # input video path
+ from basicsr.utils.video_util import VideoReader, VideoWriter
+ input_img_list = []
+ vidreader = VideoReader(args.input_path)
+ image = vidreader.get_frame()
+ while image is not None:
+ input_img_list.append(image)
+ image = vidreader.get_frame()
+ audio = vidreader.get_audio()
+ fps = vidreader.get_fps() if args.save_video_fps is None else args.save_video_fps
+ video_name = os.path.basename(args.input_path)[:-4]
+ result_root = f'results/{video_name}_{w}'
+ input_video = True
+ vidreader.close()
+ else: # input img folder
+ if args.input_path.endswith('/'): # solve when path ends with /
+ args.input_path = args.input_path[:-1]
+ # scan all the jpg and png images
+ input_img_list = sorted(glob.glob(os.path.join(args.input_path, '*.[jpJP][pnPN]*[gG]')))
+ result_root = f'results/{os.path.basename(args.input_path)}_{w}'
+
+ if not args.output_path is None: # set output path
+ result_root = args.output_path
+
+ test_img_num = len(input_img_list)
+ if test_img_num == 0:
+ raise FileNotFoundError('No input image/video is found...\n'
+ '\tNote that --input_path for video should end with .mp4|.mov|.avi')
+
+ # ------------------ set up background upsampler ------------------
+ if args.bg_upsampler == 'realesrgan':
+ bg_upsampler = set_realesrgan()
+ else:
+ bg_upsampler = None
+
+ # ------------------ set up face upsampler ------------------
+ if args.face_upsample:
+ if bg_upsampler is not None:
+ face_upsampler = bg_upsampler
+ else:
+ face_upsampler = set_realesrgan()
+ else:
+ face_upsampler = None
+
+ # ------------------ set up CodeFormer restorer -------------------
+ net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9,
+ connect_list=['32', '64', '128', '256']).to(device)
+
+ # ckpt_path = 'weights/CodeFormer/codeformer.pth'
+ ckpt_path = load_file_from_url(url=pretrain_model_url['restoration'],
+ model_dir='weights/CodeFormer', progress=True, file_name=None)
+ checkpoint = torch.load(ckpt_path)['params_ema']
+ net.load_state_dict(checkpoint)
+ net.eval()
+
+ # ------------------ set up FaceRestoreHelper -------------------
+ # large det_model: 'YOLOv5l', 'retinaface_resnet50'
+ # small det_model: 'YOLOv5n', 'retinaface_mobile0.25'
+ if not args.has_aligned:
+ print(f'Face detection model: {args.detection_model}')
+ if bg_upsampler is not None:
+ print(f'Background upsampling: True, Face upsampling: {args.face_upsample}')
+ else:
+ print(f'Background upsampling: False, Face upsampling: {args.face_upsample}')
+
+ face_helper = FaceRestoreHelper(
+ args.upscale,
+ face_size=512,
+ crop_ratio=(1, 1),
+ det_model = args.detection_model,
+ save_ext='png',
+ use_parse=True,
+ device=device)
+
+ # -------------------- start to processing ---------------------
+ for i, img_path in enumerate(input_img_list):
+ # clean all the intermediate results to process the next image
+ face_helper.clean_all()
+
+ if isinstance(img_path, str):
+ img_name = os.path.basename(img_path)
+ basename, ext = os.path.splitext(img_name)
+ print(f'[{i+1}/{test_img_num}] Processing: {img_name}')
+ img = cv2.imread(img_path, cv2.IMREAD_COLOR)
+ else: # for video processing
+ basename = str(i).zfill(6)
+ img_name = f'{video_name}_{basename}' if input_video else basename
+ print(f'[{i+1}/{test_img_num}] Processing: {img_name}')
+ img = img_path
+
+ if args.has_aligned:
+ # the input faces are already cropped and aligned
+ img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
+ face_helper.is_gray = is_gray(img, threshold=10)
+ if face_helper.is_gray:
+ print('Grayscale input: True')
+ face_helper.cropped_faces = [img]
+ else:
+ face_helper.read_image(img)
+ # get face landmarks for each face
+ num_det_faces = face_helper.get_face_landmarks_5(
+ only_center_face=args.only_center_face, resize=640, eye_dist_threshold=5)
+ print(f'\tdetect {num_det_faces} faces')
+ # align and warp each face
+ face_helper.align_warp_face()
+
+ # face restoration for each cropped face
+ for idx, cropped_face in enumerate(face_helper.cropped_faces):
+ # prepare data
+ cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
+ normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
+ cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
+
+ try:
+ with torch.no_grad():
+ output = net(cropped_face_t, w=w, adain=True)[0]
+ restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
+ del output
+ torch.cuda.empty_cache()
+ except Exception as error:
+ print(f'\tFailed inference for CodeFormer: {error}')
+ restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
+
+ restored_face = restored_face.astype('uint8')
+ face_helper.add_restored_face(restored_face, cropped_face)
+
+ # paste_back
+ if not args.has_aligned:
+ # upsample the background
+ if bg_upsampler is not None:
+ # Now only support RealESRGAN for upsampling background
+ bg_img = bg_upsampler.enhance(img, outscale=args.upscale)[0]
+ else:
+ bg_img = None
+ face_helper.get_inverse_affine(None)
+ # paste each restored face to the input image
+ if args.face_upsample and face_upsampler is not None:
+ restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box, face_upsampler=face_upsampler)
+ else:
+ restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box)
+
+ # save faces
+ for idx, (cropped_face, restored_face) in enumerate(zip(face_helper.cropped_faces, face_helper.restored_faces)):
+ # save cropped face
+ if not args.has_aligned:
+ save_crop_path = os.path.join(result_root, 'cropped_faces', f'{basename}_{idx:02d}.png')
+ imwrite(cropped_face, save_crop_path)
+ # save restored face
+ if args.has_aligned:
+ save_face_name = f'{basename}.png'
+ else:
+ save_face_name = f'{basename}_{idx:02d}.png'
+ if args.suffix is not None:
+ save_face_name = f'{save_face_name[:-4]}_{args.suffix}.png'
+ save_restore_path = os.path.join(result_root, 'restored_faces', save_face_name)
+ imwrite(restored_face, save_restore_path)
+
+ # save restored img
+ if not args.has_aligned and restored_img is not None:
+ if args.suffix is not None:
+ basename = f'{basename}_{args.suffix}'
+ save_restore_path = os.path.join(result_root, 'final_results', f'{basename}.png')
+ imwrite(restored_img, save_restore_path)
+
+ # save enhanced video
+ if input_video:
+ print('Video Saving...')
+ # load images
+ video_frames = []
+ img_list = sorted(glob.glob(os.path.join(result_root, 'final_results', '*.[jp][pn]g')))
+ for img_path in img_list:
+ img = cv2.imread(img_path)
+ video_frames.append(img)
+ # write images to video
+ height, width = video_frames[0].shape[:2]
+ if args.suffix is not None:
+ video_name = f'{video_name}_{args.suffix}.png'
+ save_restore_path = os.path.join(result_root, f'{video_name}.mp4')
+ vidwriter = VideoWriter(save_restore_path, height, width, fps, audio)
+
+ for f in video_frames:
+ vidwriter.write_frame(f)
+ vidwriter.close()
+
+ print(f'\nAll results are saved in {result_root}')
diff --git a/CodeFormer/inference_colorization.py b/CodeFormer/inference_colorization.py
new file mode 100644
index 0000000000000000000000000000000000000000..0f1b763cf06ed833ce11657c8b295c1566028922
--- /dev/null
+++ b/CodeFormer/inference_colorization.py
@@ -0,0 +1,86 @@
+import os
+import cv2
+import argparse
+import glob
+import torch
+from torchvision.transforms.functional import normalize
+from basicsr.utils import imwrite, img2tensor, tensor2img
+from basicsr.utils.download_util import load_file_from_url
+from basicsr.utils.misc import get_device
+from basicsr.utils.registry import ARCH_REGISTRY
+
+pretrain_model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer_colorization.pth'
+
+if __name__ == '__main__':
+ # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+ device = get_device()
+ parser = argparse.ArgumentParser()
+
+ parser.add_argument('-i', '--input_path', type=str, default='./inputs/gray_faces',
+ help='Input image or folder. Default: inputs/gray_faces')
+ parser.add_argument('-o', '--output_path', type=str, default=None,
+ help='Output folder. Default: results/')
+ parser.add_argument('--suffix', type=str, default=None,
+ help='Suffix of the restored faces. Default: None')
+ args = parser.parse_args()
+
+ # ------------------------ input & output ------------------------
+ print('[NOTE] The input face images should be aligned and cropped to a resolution of 512x512.')
+ if args.input_path.endswith(('jpg', 'jpeg', 'png', 'JPG', 'JPEG', 'PNG')): # input single img path
+ input_img_list = [args.input_path]
+ result_root = f'results/test_colorization_img'
+ else: # input img folder
+ if args.input_path.endswith('/'): # solve when path ends with /
+ args.input_path = args.input_path[:-1]
+ # scan all the jpg and png images
+ input_img_list = sorted(glob.glob(os.path.join(args.input_path, '*.[jpJP][pnPN]*[gG]')))
+ result_root = f'results/{os.path.basename(args.input_path)}'
+
+ if not args.output_path is None: # set output path
+ result_root = args.output_path
+
+ test_img_num = len(input_img_list)
+
+ # ------------------ set up CodeFormer restorer -------------------
+ net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9,
+ connect_list=['32', '64', '128']).to(device)
+
+ # ckpt_path = 'weights/CodeFormer/codeformer.pth'
+ ckpt_path = load_file_from_url(url=pretrain_model_url,
+ model_dir='weights/CodeFormer', progress=True, file_name=None)
+ checkpoint = torch.load(ckpt_path)['params_ema']
+ net.load_state_dict(checkpoint)
+ net.eval()
+
+ # -------------------- start to processing ---------------------
+ for i, img_path in enumerate(input_img_list):
+ img_name = os.path.basename(img_path)
+ basename, ext = os.path.splitext(img_name)
+ print(f'[{i+1}/{test_img_num}] Processing: {img_name}')
+ input_face = cv2.imread(img_path)
+ assert input_face.shape[:2] == (512, 512), 'Input resolution must be 512x512 for colorization.'
+ # input_face = cv2.resize(input_face, (512, 512), interpolation=cv2.INTER_LINEAR)
+ input_face = img2tensor(input_face / 255., bgr2rgb=True, float32=True)
+ normalize(input_face, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
+ input_face = input_face.unsqueeze(0).to(device)
+ try:
+ with torch.no_grad():
+ # w is fixed to 0 since we didn't train the Stage III for colorization
+ output_face = net(input_face, w=0, adain=True)[0]
+ save_face = tensor2img(output_face, rgb2bgr=True, min_max=(-1, 1))
+ del output_face
+ torch.cuda.empty_cache()
+ except Exception as error:
+ print(f'\tFailed inference for CodeFormer: {error}')
+ save_face = tensor2img(input_face, rgb2bgr=True, min_max=(-1, 1))
+
+ save_face = save_face.astype('uint8')
+
+ # save face
+ if args.suffix is not None:
+ basename = f'{basename}_{args.suffix}'
+ save_restore_path = os.path.join(result_root, f'{basename}.png')
+ imwrite(save_face, save_restore_path)
+
+ print(f'\nAll results are saved in {result_root}')
+
diff --git a/CodeFormer/inference_inpainting.py b/CodeFormer/inference_inpainting.py
new file mode 100644
index 0000000000000000000000000000000000000000..9cbfb69ab0d48a06cd5f5bac0a2c7f90b7bde2d0
--- /dev/null
+++ b/CodeFormer/inference_inpainting.py
@@ -0,0 +1,91 @@
+import os
+import cv2
+import argparse
+import glob
+import torch
+from torchvision.transforms.functional import normalize
+from basicsr.utils import imwrite, img2tensor, tensor2img
+from basicsr.utils.download_util import load_file_from_url
+from basicsr.utils.misc import get_device
+from basicsr.utils.registry import ARCH_REGISTRY
+
+pretrain_model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer_inpainting.pth'
+
+if __name__ == '__main__':
+ # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+ device = get_device()
+ parser = argparse.ArgumentParser()
+
+ parser.add_argument('-i', '--input_path', type=str, default='./inputs/masked_faces',
+ help='Input image or folder. Default: inputs/masked_faces')
+ parser.add_argument('-o', '--output_path', type=str, default=None,
+ help='Output folder. Default: results/')
+ parser.add_argument('--suffix', type=str, default=None,
+ help='Suffix of the restored faces. Default: None')
+ args = parser.parse_args()
+
+ # ------------------------ input & output ------------------------
+ print('[NOTE] The input face images should be aligned and cropped to a resolution of 512x512.')
+ if args.input_path.endswith(('jpg', 'jpeg', 'png', 'JPG', 'JPEG', 'PNG')): # input single img path
+ input_img_list = [args.input_path]
+ result_root = f'results/test_inpainting_img'
+ else: # input img folder
+ if args.input_path.endswith('/'): # solve when path ends with /
+ args.input_path = args.input_path[:-1]
+ # scan all the jpg and png images
+ input_img_list = sorted(glob.glob(os.path.join(args.input_path, '*.[jpJP][pnPN]*[gG]')))
+ result_root = f'results/{os.path.basename(args.input_path)}'
+
+ if not args.output_path is None: # set output path
+ result_root = args.output_path
+
+ test_img_num = len(input_img_list)
+
+ # ------------------ set up CodeFormer restorer -------------------
+ net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=512, n_head=8, n_layers=9,
+ connect_list=['32', '64', '128']).to(device)
+
+ # ckpt_path = 'weights/CodeFormer/codeformer.pth'
+ ckpt_path = load_file_from_url(url=pretrain_model_url,
+ model_dir='weights/CodeFormer', progress=True, file_name=None)
+ checkpoint = torch.load(ckpt_path)['params_ema']
+ net.load_state_dict(checkpoint)
+ net.eval()
+
+ # -------------------- start to processing ---------------------
+ for i, img_path in enumerate(input_img_list):
+ img_name = os.path.basename(img_path)
+ basename, ext = os.path.splitext(img_name)
+ print(f'[{i+1}/{test_img_num}] Processing: {img_name}')
+ input_face = cv2.imread(img_path)
+ assert input_face.shape[:2] == (512, 512), 'Input resolution must be 512x512 for inpainting.'
+ # input_face = cv2.resize(input_face, (512, 512), interpolation=cv2.INTER_LINEAR)
+ input_face = img2tensor(input_face / 255., bgr2rgb=True, float32=True)
+ normalize(input_face, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
+ input_face = input_face.unsqueeze(0).to(device)
+ try:
+ with torch.no_grad():
+ mask = torch.zeros(512, 512)
+ m_ind = torch.sum(input_face[0], dim=0)
+ mask[m_ind==3] = 1.0
+ mask = mask.view(1, 1, 512, 512).to(device)
+ # w is fixed to 1, adain=False for inpainting
+ output_face = net(input_face, w=1, adain=False)[0]
+ output_face = (1-mask)*input_face + mask*output_face
+ save_face = tensor2img(output_face, rgb2bgr=True, min_max=(-1, 1))
+ del output_face
+ torch.cuda.empty_cache()
+ except Exception as error:
+ print(f'\tFailed inference for CodeFormer: {error}')
+ save_face = tensor2img(input_face, rgb2bgr=True, min_max=(-1, 1))
+
+ save_face = save_face.astype('uint8')
+
+ # save face
+ if args.suffix is not None:
+ basename = f'{basename}_{args.suffix}'
+ save_restore_path = os.path.join(result_root, f'{basename}.png')
+ imwrite(save_face, save_restore_path)
+
+ print(f'\nAll results are saved in {result_root}')
+
diff --git a/CodeFormer/options/CodeFormer_colorization.yml b/CodeFormer/options/CodeFormer_colorization.yml
new file mode 100755
index 0000000000000000000000000000000000000000..6fa595b489131177d3336ec0ee7c420b3db97c83
--- /dev/null
+++ b/CodeFormer/options/CodeFormer_colorization.yml
@@ -0,0 +1,145 @@
+# general settings
+name: CodeFormer_colorization
+model_type: CodeFormerIdxModel
+num_gpu: 8
+manual_seed: 0
+
+# dataset and data loader settings
+datasets:
+ train:
+ name: FFHQ
+ type: FFHQBlindDataset
+ dataroot_gt: datasets/ffhq/ffhq_512
+ filename_tmpl: '{}'
+ io_backend:
+ type: disk
+
+ in_size: 512
+ gt_size: 512
+ mean: [0.5, 0.5, 0.5]
+ std: [0.5, 0.5, 0.5]
+ use_hflip: true
+ use_corrupt: true
+
+ # large degradation in stageII
+ blur_kernel_size: 41
+ use_motion_kernel: false
+ motion_kernel_prob: 0.001
+ kernel_list: ['iso', 'aniso']
+ kernel_prob: [0.5, 0.5]
+ blur_sigma: [1, 15]
+ downsample_range: [4, 30]
+ noise_range: [0, 20]
+ jpeg_range: [30, 80]
+
+ # color jitter and gray
+ color_jitter_prob: 0.3
+ color_jitter_shift: 20
+ color_jitter_pt_prob: 0.3
+ gray_prob: 0.01
+
+ latent_gt_path: ~ # without pre-calculated latent code
+ # latent_gt_path: './experiments/pretrained_models/VQGAN/latent_gt_code1024.pth'
+
+ # data loader
+ num_worker_per_gpu: 2
+ batch_size_per_gpu: 4
+ dataset_enlarge_ratio: 100
+ prefetch_mode: ~
+
+ # val:
+ # name: CelebA-HQ-512
+ # type: PairedImageDataset
+ # dataroot_lq: datasets/faces/validation/lq
+ # dataroot_gt: datasets/faces/validation/gt
+ # io_backend:
+ # type: disk
+ # mean: [0.5, 0.5, 0.5]
+ # std: [0.5, 0.5, 0.5]
+ # scale: 1
+
+# network structures
+network_g:
+ type: CodeFormer
+ dim_embd: 512
+ n_head: 8
+ n_layers: 9
+ codebook_size: 1024
+ connect_list: ['32', '64', '128', '256']
+ fix_modules: ['quantize','generator']
+ vqgan_path: './experiments/pretrained_models/vqgan/vqgan_code1024.pth' # pretrained VQGAN
+
+network_vqgan: # this config is needed if no pre-calculated latent
+ type: VQAutoEncoder
+ img_size: 512
+ nf: 64
+ ch_mult: [1, 2, 2, 4, 4, 8]
+ quantizer: 'nearest'
+ codebook_size: 1024
+
+# path
+path:
+ pretrain_network_g: ~
+ param_key_g: params_ema
+ strict_load_g: false
+ pretrain_network_d: ~
+ strict_load_d: true
+ resume_state: ~
+
+# base_lr(4.5e-6)*bach_size(4)
+train:
+ use_hq_feat_loss: true
+ feat_loss_weight: 1.0
+ cross_entropy_loss: true
+ entropy_loss_weight: 0.5
+ fidelity_weight: 0
+
+ optim_g:
+ type: Adam
+ lr: !!float 1e-4
+ weight_decay: 0
+ betas: [0.9, 0.99]
+
+ scheduler:
+ type: MultiStepLR
+ milestones: [400000, 450000]
+ gamma: 0.5
+
+ total_iter: 500000
+
+ warmup_iter: -1 # no warm up
+ ema_decay: 0.995
+
+ use_adaptive_weight: true
+
+ net_g_start_iter: 0
+ net_d_iters: 1
+ net_d_start_iter: 0
+ manual_seed: 0
+
+# validation settings
+val:
+ val_freq: !!float 5e10 # no validation
+ save_img: true
+
+ metrics:
+ psnr: # metric name, can be arbitrary
+ type: calculate_psnr
+ crop_border: 4
+ test_y_channel: false
+
+# logging settings
+logger:
+ print_freq: 100
+ save_checkpoint_freq: !!float 1e4
+ use_tb_logger: true
+ wandb:
+ project: ~
+ resume_id: ~
+
+# dist training settings
+dist_params:
+ backend: nccl
+ port: 29419
+
+find_unused_parameters: true
diff --git a/CodeFormer/options/CodeFormer_inpainting.yml b/CodeFormer/options/CodeFormer_inpainting.yml
new file mode 100755
index 0000000000000000000000000000000000000000..ddd68452776016ea3ec502e76e246b5f64810e4f
--- /dev/null
+++ b/CodeFormer/options/CodeFormer_inpainting.yml
@@ -0,0 +1,159 @@
+# general settings
+name: CodeFormer_inpainting
+model_type: CodeFormerModel
+num_gpu: 4
+manual_seed: 0
+
+# dataset and data loader settings
+datasets:
+ train:
+ name: FFHQ
+ type: FFHQBlindDataset
+ dataroot_gt: datasets/ffhq/ffhq_512
+ filename_tmpl: '{}'
+ io_backend:
+ type: disk
+
+ in_size: 512
+ gt_size: 512
+ mean: [0.5, 0.5, 0.5]
+ std: [0.5, 0.5, 0.5]
+ use_hflip: true
+ use_corrupt: false
+ gen_inpaint_mask: true
+
+ latent_gt_path: ~ # without pre-calculated latent code
+ # latent_gt_path: './experiments/pretrained_models/VQGAN/latent_gt_code1024.pth'
+
+ # data loader
+ num_worker_per_gpu: 2
+ batch_size_per_gpu: 3
+ dataset_enlarge_ratio: 100
+ prefetch_mode: ~
+
+ # val:
+ # name: CelebA-HQ-512
+ # type: PairedImageDataset
+ # dataroot_lq: datasets/faces/validation/lq
+ # dataroot_gt: datasets/faces/validation/gt
+ # io_backend:
+ # type: disk
+ # mean: [0.5, 0.5, 0.5]
+ # std: [0.5, 0.5, 0.5]
+ # scale: 1
+
+# network structures
+network_g:
+ type: CodeFormer
+ dim_embd: 512
+ n_head: 8
+ n_layers: 9
+ codebook_size: 1024
+ connect_list: ['32', '64', '128']
+ fix_modules: ['quantize','generator']
+ vqgan_path: './experiments/pretrained_models/vqgan/vqgan_code1024.pth' # pretrained VQGAN
+
+network_vqgan: # this config is needed if no pre-calculated latent
+ type: VQAutoEncoder
+ img_size: 512
+ nf: 64
+ ch_mult: [1, 2, 2, 4, 4, 8]
+ quantizer: 'nearest'
+ codebook_size: 1024
+
+network_d:
+ type: VQGANDiscriminator
+ nc: 3
+ ndf: 64
+ n_layers: 4
+ model_path: ~
+
+# path
+path:
+ pretrain_network_g: ~
+ param_key_g: params_ema
+ strict_load_g: true
+ pretrain_network_d: ~
+ strict_load_d: true
+ resume_state: ~
+
+# base_lr(4.5e-6)*bach_size(4)
+train:
+ use_hq_feat_loss: true
+ feat_loss_weight: 1.0
+ cross_entropy_loss: true
+ entropy_loss_weight: 0.5
+ scale_adaptive_gan_weight: 0.1
+ fidelity_weight: 1.0
+
+ optim_g:
+ type: Adam
+ lr: !!float 7e-5
+ weight_decay: 0
+ betas: [0.9, 0.99]
+ optim_d:
+ type: Adam
+ lr: !!float 7e-5
+ weight_decay: 0
+ betas: [0.9, 0.99]
+
+ scheduler:
+ type: MultiStepLR
+ milestones: [250000, 300000]
+ gamma: 0.5
+
+ total_iter: 300000
+
+ warmup_iter: -1 # no warm up
+ ema_decay: 0.997
+
+ pixel_opt:
+ type: L1Loss
+ loss_weight: 1.0
+ reduction: mean
+
+ perceptual_opt:
+ type: LPIPSLoss
+ loss_weight: 1.0
+ use_input_norm: true
+ range_norm: true
+
+ gan_opt:
+ type: GANLoss
+ gan_type: hinge
+ loss_weight: !!float 1.0 # adaptive_weighting
+
+
+ use_adaptive_weight: true
+
+ net_g_start_iter: 0
+ net_d_iters: 1
+ net_d_start_iter: 296001
+ manual_seed: 0
+
+# validation settings
+val:
+ val_freq: !!float 5e10 # no validation
+ save_img: true
+
+ metrics:
+ psnr: # metric name, can be arbitrary
+ type: calculate_psnr
+ crop_border: 4
+ test_y_channel: false
+
+# logging settings
+logger:
+ print_freq: 100
+ save_checkpoint_freq: !!float 1e4
+ use_tb_logger: true
+ wandb:
+ project: ~
+ resume_id: ~
+
+# dist training settings
+dist_params:
+ backend: nccl
+ port: 29420
+
+find_unused_parameters: true
diff --git a/CodeFormer/options/CodeFormer_stage2.yml b/CodeFormer/options/CodeFormer_stage2.yml
new file mode 100755
index 0000000000000000000000000000000000000000..4dfe9c9d1a38bcbd26d146d258d3795a9ef4030d
--- /dev/null
+++ b/CodeFormer/options/CodeFormer_stage2.yml
@@ -0,0 +1,145 @@
+# general settings
+name: CodeFormer_stage2
+model_type: CodeFormerIdxModel
+num_gpu: 8
+manual_seed: 0
+
+# dataset and data loader settings
+datasets:
+ train:
+ name: FFHQ
+ type: FFHQBlindDataset
+ dataroot_gt: datasets/ffhq/ffhq_512
+ filename_tmpl: '{}'
+ io_backend:
+ type: disk
+
+ in_size: 512
+ gt_size: 512
+ mean: [0.5, 0.5, 0.5]
+ std: [0.5, 0.5, 0.5]
+ use_hflip: true
+ use_corrupt: true
+
+ # large degradation in stageII
+ blur_kernel_size: 41
+ use_motion_kernel: false
+ motion_kernel_prob: 0.001
+ kernel_list: ['iso', 'aniso']
+ kernel_prob: [0.5, 0.5]
+ blur_sigma: [1, 15]
+ downsample_range: [4, 30]
+ noise_range: [0, 20]
+ jpeg_range: [30, 80]
+
+ latent_gt_path: ~ # without pre-calculated latent code
+ # latent_gt_path: './experiments/pretrained_models/VQGAN/latent_gt_code1024.pth'
+
+ # data loader
+ num_worker_per_gpu: 2
+ batch_size_per_gpu: 4
+ dataset_enlarge_ratio: 100
+ prefetch_mode: ~
+
+ # val:
+ # name: CelebA-HQ-512
+ # type: PairedImageDataset
+ # dataroot_lq: datasets/faces/validation/lq
+ # dataroot_gt: datasets/faces/validation/gt
+ # io_backend:
+ # type: disk
+ # mean: [0.5, 0.5, 0.5]
+ # std: [0.5, 0.5, 0.5]
+ # scale: 1
+
+# network structures
+network_g:
+ type: CodeFormer
+ dim_embd: 512
+ n_head: 8
+ n_layers: 9
+ codebook_size: 1024
+ connect_list: ['32', '64', '128', '256']
+ fix_modules: ['quantize','generator']
+ vqgan_path: './experiments/pretrained_models/vqgan/vqgan_code1024.pth' # pretrained VQGAN
+
+network_vqgan: # this config is needed if no pre-calculated latent
+ type: VQAutoEncoder
+ img_size: 512
+ nf: 64
+ ch_mult: [1, 2, 2, 4, 4, 8]
+ quantizer: 'nearest'
+ codebook_size: 1024
+
+# path
+path:
+ pretrain_network_g: ~
+ param_key_g: params_ema
+ strict_load_g: false
+ pretrain_network_d: ~
+ strict_load_d: true
+ resume_state: ~
+
+# base_lr(4.5e-6)*bach_size(4)
+train:
+ use_hq_feat_loss: true
+ feat_loss_weight: 1.0
+ cross_entropy_loss: true
+ entropy_loss_weight: 0.5
+ fidelity_weight: 0
+
+ optim_g:
+ type: Adam
+ lr: !!float 1e-4
+ weight_decay: 0
+ betas: [0.9, 0.99]
+
+ scheduler:
+ type: MultiStepLR
+ milestones: [400000, 450000]
+ gamma: 0.5
+
+ # scheduler:
+ # type: CosineAnnealingRestartLR
+ # periods: [500000]
+ # restart_weights: [1]
+ # eta_min: !!float 2e-5 # no lr reduce in official vqgan code
+
+ total_iter: 500000
+
+ warmup_iter: -1 # no warm up
+ ema_decay: 0.995
+
+ use_adaptive_weight: true
+
+ net_g_start_iter: 0
+ net_d_iters: 1
+ net_d_start_iter: 0
+ manual_seed: 0
+
+# validation settings
+val:
+ val_freq: !!float 5e10 # no validation
+ save_img: true
+
+ metrics:
+ psnr: # metric name, can be arbitrary
+ type: calculate_psnr
+ crop_border: 4
+ test_y_channel: false
+
+# logging settings
+logger:
+ print_freq: 100
+ save_checkpoint_freq: !!float 1e4
+ use_tb_logger: true
+ wandb:
+ project: ~
+ resume_id: ~
+
+# dist training settings
+dist_params:
+ backend: nccl
+ port: 29412
+
+find_unused_parameters: true
diff --git a/CodeFormer/options/CodeFormer_stage3.yml b/CodeFormer/options/CodeFormer_stage3.yml
new file mode 100755
index 0000000000000000000000000000000000000000..fbca3f2ae832a25d7e9a0d547703262b07e1833b
--- /dev/null
+++ b/CodeFormer/options/CodeFormer_stage3.yml
@@ -0,0 +1,171 @@
+# general settings
+name: CodeFormer_stage3
+model_type: CodeFormerJointModel
+num_gpu: 8
+manual_seed: 0
+
+# dataset and data loader settings
+datasets:
+ train:
+ name: FFHQ
+ type: FFHQBlindJointDataset
+ dataroot_gt: datasets/ffhq/ffhq_512
+ filename_tmpl: '{}'
+ io_backend:
+ type: disk
+
+ in_size: 512
+ gt_size: 512
+ mean: [0.5, 0.5, 0.5]
+ std: [0.5, 0.5, 0.5]
+ use_hflip: true
+ use_corrupt: true
+
+ blur_kernel_size: 41
+ use_motion_kernel: false
+ motion_kernel_prob: 0.001
+ kernel_list: ['iso', 'aniso']
+ kernel_prob: [0.5, 0.5]
+ # small degradation in stageIII
+ blur_sigma: [0.1, 10]
+ downsample_range: [1, 12]
+ noise_range: [0, 15]
+ jpeg_range: [60, 100]
+ # large degradation in stageII
+ blur_sigma_large: [1, 15]
+ downsample_range_large: [4, 30]
+ noise_range_large: [0, 20]
+ jpeg_range_large: [30, 80]
+
+ latent_gt_path: ~ # without pre-calculated latent code
+ # latent_gt_path: './experiments/pretrained_models/VQGAN/latent_gt_code1024.pth'
+
+ # data loader
+ num_worker_per_gpu: 1
+ batch_size_per_gpu: 3
+ dataset_enlarge_ratio: 100
+ prefetch_mode: ~
+
+ # val:
+ # name: CelebA-HQ-512
+ # type: PairedImageDataset
+ # dataroot_lq: datasets/faces/validation/lq
+ # dataroot_gt: datasets/faces/validation/gt
+ # io_backend:
+ # type: disk
+ # mean: [0.5, 0.5, 0.5]
+ # std: [0.5, 0.5, 0.5]
+ # scale: 1
+
+# network structures
+network_g:
+ type: CodeFormer
+ dim_embd: 512
+ n_head: 8
+ n_layers: 9
+ codebook_size: 1024
+ connect_list: ['32', '64', '128', '256']
+ fix_modules: ['quantize','generator']
+
+network_vqgan: # this config is needed if no pre-calculated latent
+ type: VQAutoEncoder
+ img_size: 512
+ nf: 64
+ ch_mult: [1, 2, 2, 4, 4, 8]
+ quantizer: 'nearest'
+ codebook_size: 1024
+
+network_d:
+ type: VQGANDiscriminator
+ nc: 3
+ ndf: 64
+ n_layers: 4
+
+# path
+path:
+ pretrain_network_g: './experiments/pretrained_models/CodeFormer_stage2/net_g_latest.pth' # pretrained G model in StageII
+ param_key_g: params_ema
+ strict_load_g: false
+ pretrain_network_d: './experiments/pretrained_models/CodeFormer_stage2/net_d_latest.pth' # pretrained D model in StageII
+ resume_state: ~
+
+# base_lr(4.5e-6)*bach_size(4)
+train:
+ use_hq_feat_loss: true
+ feat_loss_weight: 1.0
+ cross_entropy_loss: true
+ entropy_loss_weight: 0.5
+ scale_adaptive_gan_weight: 0.1
+
+ optim_g:
+ type: Adam
+ lr: !!float 5e-5
+ weight_decay: 0
+ betas: [0.9, 0.99]
+ optim_d:
+ type: Adam
+ lr: !!float 5e-5
+ weight_decay: 0
+ betas: [0.9, 0.99]
+
+ scheduler:
+ type: CosineAnnealingRestartLR
+ periods: [150000]
+ restart_weights: [1]
+ eta_min: !!float 2e-5
+
+
+ total_iter: 150000
+
+ warmup_iter: -1 # no warm up
+ ema_decay: 0.997
+
+ pixel_opt:
+ type: L1Loss
+ loss_weight: 1.0
+ reduction: mean
+
+ perceptual_opt:
+ type: LPIPSLoss
+ loss_weight: 1.0
+ use_input_norm: true
+ range_norm: true
+
+ gan_opt:
+ type: GANLoss
+ gan_type: hinge
+ loss_weight: !!float 1.0 # adaptive_weighting
+
+ use_adaptive_weight: true
+
+ net_g_start_iter: 0
+ net_d_iters: 1
+ net_d_start_iter: 5001
+ manual_seed: 0
+
+# validation settings
+val:
+ val_freq: !!float 5e10 # no validation
+ save_img: true
+
+ metrics:
+ psnr: # metric name, can be arbitrary
+ type: calculate_psnr
+ crop_border: 4
+ test_y_channel: false
+
+# logging settings
+logger:
+ print_freq: 100
+ save_checkpoint_freq: !!float 5e3
+ use_tb_logger: true
+ wandb:
+ project: ~
+ resume_id: ~
+
+# dist training settings
+dist_params:
+ backend: nccl
+ port: 29413
+
+find_unused_parameters: true
diff --git a/CodeFormer/options/VQGAN_512_ds32_nearest_stage1.yml b/CodeFormer/options/VQGAN_512_ds32_nearest_stage1.yml
new file mode 100755
index 0000000000000000000000000000000000000000..0753fc366fd60627bd3103873e194688927fb48b
--- /dev/null
+++ b/CodeFormer/options/VQGAN_512_ds32_nearest_stage1.yml
@@ -0,0 +1,136 @@
+# general settings
+name: VQGAN-512-ds32-nearest-stage1
+model_type: VQGANModel
+num_gpu: 8
+manual_seed: 0
+
+# dataset and data loader settings
+datasets:
+ train:
+ name: FFHQ
+ type: FFHQBlindDataset
+ dataroot_gt: datasets/ffhq/ffhq_512
+ filename_tmpl: '{}'
+ io_backend:
+ type: disk
+
+ in_size: 512
+ gt_size: 512
+ mean: [0.5, 0.5, 0.5]
+ std: [0.5, 0.5, 0.5]
+ use_hflip: true
+ use_corrupt: false # for VQGAN
+
+ # data loader
+ num_worker_per_gpu: 2
+ batch_size_per_gpu: 4
+ dataset_enlarge_ratio: 100
+
+ prefetch_mode: cpu
+ num_prefetch_queue: 4
+
+ # val:
+ # name: CelebA-HQ-512
+ # type: PairedImageDataset
+ # dataroot_lq: datasets/faces/validation/gt
+ # dataroot_gt: datasets/faces/validation/gt
+ # io_backend:
+ # type: disk
+ # mean: [0.5, 0.5, 0.5]
+ # std: [0.5, 0.5, 0.5]
+ # scale: 1
+
+# network structures
+network_g:
+ type: VQAutoEncoder
+ img_size: 512
+ nf: 64
+ ch_mult: [1, 2, 2, 4, 4, 8]
+ quantizer: 'nearest'
+ codebook_size: 1024
+
+network_d:
+ type: VQGANDiscriminator
+ nc: 3
+ ndf: 64
+
+# path
+path:
+ pretrain_network_g: ~
+ param_key_g: params_ema
+ strict_load_g: true
+ pretrain_network_d: ~
+ strict_load_d: true
+ resume_state: ~
+
+# base_lr(4.5e-6)*bach_size(4)
+train:
+ optim_g:
+ type: Adam
+ lr: !!float 7e-5
+ weight_decay: 0
+ betas: [0.9, 0.99]
+ optim_d:
+ type: Adam
+ lr: !!float 7e-5
+ weight_decay: 0
+ betas: [0.9, 0.99]
+
+ scheduler:
+ type: CosineAnnealingRestartLR
+ periods: [1600000]
+ restart_weights: [1]
+ eta_min: !!float 6e-5 # no lr reduce in official vqgan code
+
+ total_iter: 1600000
+
+ warmup_iter: -1 # no warm up
+ ema_decay: 0.995 # GFPGAN: 0.5**(32 / (10 * 1000) == 0.998; Unleashing: 0.995
+
+ pixel_opt:
+ type: L1Loss
+ loss_weight: 1.0
+ reduction: mean
+
+ perceptual_opt:
+ type: LPIPSLoss
+ loss_weight: 1.0
+ use_input_norm: true
+ range_norm: true
+
+ gan_opt:
+ type: GANLoss
+ gan_type: hinge
+ loss_weight: !!float 1.0 # adaptive_weighting
+
+ net_g_start_iter: 0
+ net_d_iters: 1
+ net_d_start_iter: 30001
+ manual_seed: 0
+
+# validation settings
+val:
+ val_freq: !!float 5e10 # no validation
+ save_img: true
+
+ metrics:
+ psnr: # metric name, can be arbitrary
+ type: calculate_psnr
+ crop_border: 4
+ test_y_channel: false
+
+# logging settings
+logger:
+ print_freq: 100
+ save_checkpoint_freq: !!float 1e4
+ use_tb_logger: true
+ wandb:
+ project: ~
+ resume_id: ~
+
+# dist training settings
+dist_params:
+ backend: nccl
+ port: 29411
+
+find_unused_parameters: true
diff --git a/CodeFormer/requirements.txt b/CodeFormer/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..8c4c6db340cc710e310e3fa87e1dacb316567863
--- /dev/null
+++ b/CodeFormer/requirements.txt
@@ -0,0 +1,19 @@
+# addict
+# future
+# lmdb
+# numpy
+# opencv-python
+# Pillow
+# pyyaml
+# requests
+# scikit-image
+# scipy
+# tb-nightly
+
+# tqdm
+# yapf
+# lpips
+# gdown # supports downloading the large file from Google Drive
+
+# torch>=1.7.1
+# torchvision
\ No newline at end of file
diff --git a/CodeFormer/scripts/crop_align_face.py b/CodeFormer/scripts/crop_align_face.py
new file mode 100755
index 0000000000000000000000000000000000000000..c44d6e8f7b50c2332a895cd37d39a86568ffb16c
--- /dev/null
+++ b/CodeFormer/scripts/crop_align_face.py
@@ -0,0 +1,205 @@
+"""
+brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset)
+author: lzhbrian (https://lzhbrian.me)
+link: https://gist.github.com/lzhbrian/bde87ab23b499dd02ba4f588258f57d5
+date: 2020.1.5
+note: code is heavily borrowed from
+ https://github.com/NVlabs/ffhq-dataset
+ http://dlib.net/face_landmark_detection.py.html
+requirements:
+ conda install Pillow numpy scipy
+ conda install -c conda-forge dlib
+ # download face landmark model from:
+ # http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
+"""
+
+import os
+import glob
+import numpy as np
+import PIL
+import PIL.Image
+import scipy
+import scipy.ndimage
+import argparse
+from basicsr.utils.download_util import load_file_from_url
+
+try:
+ import dlib
+except ImportError:
+ print('Please install dlib by running:' 'conda install -c conda-forge dlib')
+
+# download model from: http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
+shape_predictor_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/shape_predictor_68_face_landmarks-fbdc2cb8.dat'
+ckpt_path = load_file_from_url(url=shape_predictor_url,
+ model_dir='weights/dlib', progress=True, file_name=None)
+predictor = dlib.shape_predictor('weights/dlib/shape_predictor_68_face_landmarks-fbdc2cb8.dat')
+
+
+def get_landmark(filepath, only_keep_largest=True):
+ """get landmark with dlib
+ :return: np.array shape=(68, 2)
+ """
+ detector = dlib.get_frontal_face_detector()
+
+ img = dlib.load_rgb_image(filepath)
+ dets = detector(img, 1)
+
+ # Shangchen modified
+ print("\tNumber of faces detected: {}".format(len(dets)))
+ if only_keep_largest:
+ print('\tOnly keep the largest.')
+ face_areas = []
+ for k, d in enumerate(dets):
+ face_area = (d.right() - d.left()) * (d.bottom() - d.top())
+ face_areas.append(face_area)
+
+ largest_idx = face_areas.index(max(face_areas))
+ d = dets[largest_idx]
+ shape = predictor(img, d)
+ # print("Part 0: {}, Part 1: {} ...".format(
+ # shape.part(0), shape.part(1)))
+ else:
+ for k, d in enumerate(dets):
+ # print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
+ # k, d.left(), d.top(), d.right(), d.bottom()))
+ # Get the landmarks/parts for the face in box d.
+ shape = predictor(img, d)
+ # print("Part 0: {}, Part 1: {} ...".format(
+ # shape.part(0), shape.part(1)))
+
+ t = list(shape.parts())
+ a = []
+ for tt in t:
+ a.append([tt.x, tt.y])
+ lm = np.array(a)
+ # lm is a shape=(68,2) np.array
+ return lm
+
+def align_face(filepath, out_path):
+ """
+ :param filepath: str
+ :return: PIL Image
+ """
+ try:
+ lm = get_landmark(filepath)
+ except:
+ print('No landmark ...')
+ return
+
+ lm_chin = lm[0:17] # left-right
+ lm_eyebrow_left = lm[17:22] # left-right
+ lm_eyebrow_right = lm[22:27] # left-right
+ lm_nose = lm[27:31] # top-down
+ lm_nostrils = lm[31:36] # top-down
+ lm_eye_left = lm[36:42] # left-clockwise
+ lm_eye_right = lm[42:48] # left-clockwise
+ lm_mouth_outer = lm[48:60] # left-clockwise
+ lm_mouth_inner = lm[60:68] # left-clockwise
+
+ # Calculate auxiliary vectors.
+ eye_left = np.mean(lm_eye_left, axis=0)
+ eye_right = np.mean(lm_eye_right, axis=0)
+ eye_avg = (eye_left + eye_right) * 0.5
+ eye_to_eye = eye_right - eye_left
+ mouth_left = lm_mouth_outer[0]
+ mouth_right = lm_mouth_outer[6]
+ mouth_avg = (mouth_left + mouth_right) * 0.5
+ eye_to_mouth = mouth_avg - eye_avg
+
+ # Choose oriented crop rectangle.
+ x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
+ x /= np.hypot(*x)
+ x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
+ y = np.flipud(x) * [-1, 1]
+ c = eye_avg + eye_to_mouth * 0.1
+ quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
+ qsize = np.hypot(*x) * 2
+
+ # read image
+ img = PIL.Image.open(filepath)
+
+ output_size = 512
+ transform_size = 4096
+ enable_padding = False
+
+ # Shrink.
+ shrink = int(np.floor(qsize / output_size * 0.5))
+ if shrink > 1:
+ rsize = (int(np.rint(float(img.size[0]) / shrink)),
+ int(np.rint(float(img.size[1]) / shrink)))
+ img = img.resize(rsize, PIL.Image.ANTIALIAS)
+ quad /= shrink
+ qsize /= shrink
+
+ # Crop.
+ border = max(int(np.rint(qsize * 0.1)), 3)
+ crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))),
+ int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1]))))
+ crop = (max(crop[0] - border, 0), max(crop[1] - border, 0),
+ min(crop[2] + border,
+ img.size[0]), min(crop[3] + border, img.size[1]))
+ if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
+ img = img.crop(crop)
+ quad -= crop[0:2]
+
+ # Pad.
+ pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))),
+ int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1]))))
+ pad = (max(-pad[0] + border,
+ 0), max(-pad[1] + border,
+ 0), max(pad[2] - img.size[0] + border,
+ 0), max(pad[3] - img.size[1] + border, 0))
+ if enable_padding and max(pad) > border - 4:
+ pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
+ img = np.pad(
+ np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)),
+ 'reflect')
+ h, w, _ = img.shape
+ y, x, _ = np.ogrid[:h, :w, :1]
+ mask = np.maximum(
+ 1.0 -
+ np.minimum(np.float32(x) / pad[0],
+ np.float32(w - 1 - x) / pad[2]), 1.0 -
+ np.minimum(np.float32(y) / pad[1],
+ np.float32(h - 1 - y) / pad[3]))
+ blur = qsize * 0.02
+ img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) -
+ img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
+ img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
+ img = PIL.Image.fromarray(
+ np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
+ quad += pad[:2]
+
+ img = img.transform((transform_size, transform_size), PIL.Image.QUAD,
+ (quad + 0.5).flatten(), PIL.Image.BILINEAR)
+
+ if output_size < transform_size:
+ img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
+
+ # Save aligned image.
+ # print('saveing: ', out_path)
+ img.save(out_path)
+
+ return img, np.max(quad[:, 0]) - np.min(quad[:, 0])
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('-i', '--in_dir', type=str, default='./inputs/whole_imgs')
+ parser.add_argument('-o', '--out_dir', type=str, default='./inputs/cropped_faces')
+ args = parser.parse_args()
+
+ if args.out_dir.endswith('/'): # solve when path ends with /
+ args.out_dir = args.out_dir[:-1]
+ dir_name = os.path.abspath(args.out_dir)
+ os.makedirs(dir_name, exist_ok=True)
+
+ img_list = sorted(glob.glob(os.path.join(args.in_dir, '*.[jpJP][pnPN]*[gG]')))
+ test_img_num = len(img_list)
+
+ for i, in_path in enumerate(img_list):
+ img_name = os.path.basename(in_path)
+ print(f'[{i+1}/{test_img_num}] Processing: {img_name}')
+ out_path = os.path.join(args.out_dir, in_path.split("/")[-1])
+ out_path = out_path.replace('.jpg', '.png')
+ size_ = align_face(in_path, out_path)
\ No newline at end of file
diff --git a/CodeFormer/scripts/download_pretrained_models.py b/CodeFormer/scripts/download_pretrained_models.py
new file mode 100644
index 0000000000000000000000000000000000000000..70737833ced75556a8e1be04aa23e03c88fe6830
--- /dev/null
+++ b/CodeFormer/scripts/download_pretrained_models.py
@@ -0,0 +1,52 @@
+import argparse
+import os
+from os import path as osp
+
+from basicsr.utils.download_util import load_file_from_url
+
+
+def download_pretrained_models(method, file_urls):
+ if method == 'CodeFormer_train':
+ method = 'CodeFormer'
+ save_path_root = f'./weights/{method}'
+ os.makedirs(save_path_root, exist_ok=True)
+
+ for file_name, file_url in file_urls.items():
+ save_path = load_file_from_url(url=file_url, model_dir=save_path_root, progress=True, file_name=file_name)
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+
+ parser.add_argument(
+ 'method',
+ type=str,
+ help=("Options: 'CodeFormer' 'facelib' 'dlib'. Set to 'all' to download all the models."))
+ args = parser.parse_args()
+
+ file_urls = {
+ 'CodeFormer': {
+ 'codeformer.pth': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
+ },
+ 'CodeFormer_train': {
+ 'vqgan_code1024.pth': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/vqgan_code1024.pth',
+ 'latent_gt_code1024.pth': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/latent_gt_code1024.pth',
+ 'codeformer_stage2.pth': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer_stage2.pth',
+ 'codeformer.pth': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
+ },
+ 'facelib': {
+ # 'yolov5l-face.pth': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5l-face.pth',
+ 'detection_Resnet50_Final.pth': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth',
+ 'parsing_parsenet.pth': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth'
+ },
+ 'dlib': {
+ 'mmod_human_face_detector-4cb19393.dat': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/mmod_human_face_detector-4cb19393.dat',
+ 'shape_predictor_5_face_landmarks-c4b1e980.dat': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/shape_predictor_5_face_landmarks-c4b1e980.dat'
+ }
+ }
+
+ if args.method == 'all':
+ for method in file_urls.keys():
+ download_pretrained_models(method, file_urls[method])
+ else:
+ download_pretrained_models(args.method, file_urls[args.method])
\ No newline at end of file
diff --git a/CodeFormer/scripts/download_pretrained_models_from_gdrive.py b/CodeFormer/scripts/download_pretrained_models_from_gdrive.py
new file mode 100644
index 0000000000000000000000000000000000000000..7df5be6fc260394ee9bbd0a7ae377e2ca657fe83
--- /dev/null
+++ b/CodeFormer/scripts/download_pretrained_models_from_gdrive.py
@@ -0,0 +1,60 @@
+import argparse
+import os
+from os import path as osp
+
+# from basicsr.utils.download_util import download_file_from_google_drive
+import gdown
+
+
+def download_pretrained_models(method, file_ids):
+ save_path_root = f'./weights/{method}'
+ os.makedirs(save_path_root, exist_ok=True)
+
+ for file_name, file_id in file_ids.items():
+ file_url = 'https://drive.google.com/uc?id='+file_id
+ save_path = osp.abspath(osp.join(save_path_root, file_name))
+ if osp.exists(save_path):
+ user_response = input(f'{file_name} already exist. Do you want to cover it? Y/N\n')
+ if user_response.lower() == 'y':
+ print(f'Covering {file_name} to {save_path}')
+ gdown.download(file_url, save_path, quiet=False)
+ # download_file_from_google_drive(file_id, save_path)
+ elif user_response.lower() == 'n':
+ print(f'Skipping {file_name}')
+ else:
+ raise ValueError('Wrong input. Only accepts Y/N.')
+ else:
+ print(f'Downloading {file_name} to {save_path}')
+ gdown.download(file_url, save_path, quiet=False)
+ # download_file_from_google_drive(file_id, save_path)
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+
+ parser.add_argument(
+ 'method',
+ type=str,
+ help=("Options: 'CodeFormer' 'facelib'. Set to 'all' to download all the models."))
+ args = parser.parse_args()
+
+ # file name: file id
+ # 'dlib': {
+ # 'mmod_human_face_detector-4cb19393.dat': '1qD-OqY8M6j4PWUP_FtqfwUPFPRMu6ubX',
+ # 'shape_predictor_5_face_landmarks-c4b1e980.dat': '1vF3WBUApw4662v9Pw6wke3uk1qxnmLdg',
+ # 'shape_predictor_68_face_landmarks-fbdc2cb8.dat': '1tJyIVdCHaU6IDMDx86BZCxLGZfsWB8yq'
+ # }
+ file_ids = {
+ 'CodeFormer': {
+ 'codeformer.pth': '1v_E_vZvP-dQPF55Kc5SRCjaKTQXDz-JB'
+ },
+ 'facelib': {
+ 'yolov5l-face.pth': '131578zMA6B2x8VQHyHfa6GEPtulMCNzV',
+ 'parsing_parsenet.pth': '16pkohyZZ8ViHGBk3QtVqxLZKzdo466bK'
+ }
+ }
+
+ if args.method == 'all':
+ for method in file_ids.keys():
+ download_pretrained_models(method, file_ids[method])
+ else:
+ download_pretrained_models(args.method, file_ids[args.method])
\ No newline at end of file
diff --git a/CodeFormer/scripts/generate_latent_gt.py b/CodeFormer/scripts/generate_latent_gt.py
new file mode 100644
index 0000000000000000000000000000000000000000..3f1f17b0b35566c5b79201fbc2ab706b2d36957c
--- /dev/null
+++ b/CodeFormer/scripts/generate_latent_gt.py
@@ -0,0 +1,67 @@
+import argparse
+import glob
+import numpy as np
+import os
+import cv2
+import torch
+from torchvision.transforms.functional import normalize
+from basicsr.utils import imwrite, img2tensor, tensor2img
+
+from basicsr.utils.registry import ARCH_REGISTRY
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('-i', '--test_path', type=str, default='datasets/ffhq/ffhq_512')
+ parser.add_argument('-o', '--save_root', type=str, default='./experiments/pretrained_models/vqgan')
+ parser.add_argument('--codebook_size', type=int, default=1024)
+ parser.add_argument('--ckpt_path', type=str, default='./experiments/pretrained_models/vqgan/net_g.pth')
+ args = parser.parse_args()
+
+ if args.save_root.endswith('/'): # solve when path ends with /
+ args.save_root = args.save_root[:-1]
+ dir_name = os.path.abspath(args.save_root)
+ os.makedirs(dir_name, exist_ok=True)
+
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+ test_path = args.test_path
+ save_root = args.save_root
+ ckpt_path = args.ckpt_path
+ codebook_size = args.codebook_size
+
+ vqgan = ARCH_REGISTRY.get('VQAutoEncoder')(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',
+ codebook_size=codebook_size).to(device)
+ checkpoint = torch.load(ckpt_path)['params_ema']
+
+ vqgan.load_state_dict(checkpoint)
+ vqgan.eval()
+
+ sum_latent = np.zeros((codebook_size)).astype('float64')
+ size_latent = 16
+ latent = {}
+ latent['orig'] = {}
+ latent['hflip'] = {}
+ for i in ['orig', 'hflip']:
+ # for i in ['hflip']:
+ for img_path in sorted(glob.glob(os.path.join(test_path, '*.[jp][pn]g'))):
+ img_name = os.path.basename(img_path)
+ img = cv2.imread(img_path)
+ if i == 'hflip':
+ cv2.flip(img, 1, img)
+ img = img2tensor(img / 255., bgr2rgb=True, float32=True)
+ normalize(img, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
+ img = img.unsqueeze(0).to(device)
+ with torch.no_grad():
+ # output = net(img)[0]
+ x, feat_dict = vqgan.encoder(img, True)
+ x, _, log = vqgan.quantize(x)
+ # del output
+ torch.cuda.empty_cache()
+
+ min_encoding_indices = log['min_encoding_indices']
+ min_encoding_indices = min_encoding_indices.view(size_latent,size_latent)
+ latent[i][img_name[:-4]] = min_encoding_indices.cpu().numpy()
+ print(img_name, latent[i][img_name[:-4]].shape)
+
+ latent_save_path = os.path.join(save_root, f'latent_gt_code{codebook_size}.pth')
+ torch.save(latent, latent_save_path)
+ print(f'\nLatent GT code are saved in {save_root}')
diff --git a/CodeFormer/scripts/inference_vqgan.py b/CodeFormer/scripts/inference_vqgan.py
new file mode 100644
index 0000000000000000000000000000000000000000..62644bbac0ed7118887385e7ec220d10b00f22b1
--- /dev/null
+++ b/CodeFormer/scripts/inference_vqgan.py
@@ -0,0 +1,59 @@
+import argparse
+import glob
+import numpy as np
+import os
+import cv2
+import torch
+from torchvision.transforms.functional import normalize
+from basicsr.utils import imwrite, img2tensor, tensor2img
+
+from basicsr.utils.registry import ARCH_REGISTRY
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('-i', '--test_path', type=str, default='datasets/ffhq/ffhq_512')
+ parser.add_argument('-o', '--save_root', type=str, default='./results/vqgan_rec')
+ parser.add_argument('--codebook_size', type=int, default=1024)
+ parser.add_argument('--ckpt_path', type=str, default='./experiments/pretrained_models/vqgan/net_g.pth')
+ args = parser.parse_args()
+
+ if args.save_root.endswith('/'): # solve when path ends with /
+ args.save_root = args.save_root[:-1]
+ dir_name = os.path.abspath(args.save_root)
+ os.makedirs(dir_name, exist_ok=True)
+
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+ test_path = args.test_path
+ save_root = args.save_root
+ ckpt_path = args.ckpt_path
+ codebook_size = args.codebook_size
+
+ vqgan = ARCH_REGISTRY.get('VQAutoEncoder')(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',
+ codebook_size=codebook_size).to(device)
+ checkpoint = torch.load(ckpt_path)['params_ema']
+
+ vqgan.load_state_dict(checkpoint)
+ vqgan.eval()
+
+ for img_path in sorted(glob.glob(os.path.join(test_path, '*.[jp][pn]g'))):
+ img_name = os.path.basename(img_path)
+ print(img_name)
+ img = cv2.imread(img_path)
+ img = img2tensor(img / 255., bgr2rgb=True, float32=True)
+ normalize(img, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
+ img = img.unsqueeze(0).to(device)
+ with torch.no_grad():
+ output = vqgan(img)[0]
+ output = tensor2img(output, min_max=[-1,1])
+ img = tensor2img(img, min_max=[-1,1])
+ restored_img = np.concatenate([img, output], axis=1)
+ restored_img = output
+ del output
+ torch.cuda.empty_cache()
+
+ path = os.path.splitext(os.path.join(save_root, img_name))[0]
+ save_path = f'{path}.png'
+ imwrite(restored_img, save_path)
+
+ print(f'\nAll results are saved in {save_root}')
+
diff --git a/CodeFormer/web-demos/hugging_face/app.py b/CodeFormer/web-demos/hugging_face/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..c614e7c8f8429439c81c5e0f712b2f62097768fd
--- /dev/null
+++ b/CodeFormer/web-demos/hugging_face/app.py
@@ -0,0 +1,283 @@
+"""
+This file is used for deploying hugging face demo:
+https://huggingface.co/spaces/sczhou/CodeFormer
+"""
+
+import sys
+sys.path.append('CodeFormer')
+import os
+import cv2
+import torch
+import torch.nn.functional as F
+import gradio as gr
+
+from torchvision.transforms.functional import normalize
+
+from basicsr.archs.rrdbnet_arch import RRDBNet
+from basicsr.utils import imwrite, img2tensor, tensor2img
+from basicsr.utils.download_util import load_file_from_url
+from basicsr.utils.misc import gpu_is_available, get_device
+from basicsr.utils.realesrgan_utils import RealESRGANer
+from basicsr.utils.registry import ARCH_REGISTRY
+
+from facelib.utils.face_restoration_helper import FaceRestoreHelper
+from facelib.utils.misc import is_gray
+
+
+os.system("pip freeze")
+
+pretrain_model_url = {
+ 'codeformer': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
+ 'detection': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth',
+ 'parsing': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth',
+ 'realesrgan': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth'
+}
+# download weights
+if not os.path.exists('CodeFormer/weights/CodeFormer/codeformer.pth'):
+ load_file_from_url(url=pretrain_model_url['codeformer'], model_dir='CodeFormer/weights/CodeFormer', progress=True, file_name=None)
+if not os.path.exists('CodeFormer/weights/facelib/detection_Resnet50_Final.pth'):
+ load_file_from_url(url=pretrain_model_url['detection'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None)
+if not os.path.exists('CodeFormer/weights/facelib/parsing_parsenet.pth'):
+ load_file_from_url(url=pretrain_model_url['parsing'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None)
+if not os.path.exists('CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth'):
+ load_file_from_url(url=pretrain_model_url['realesrgan'], model_dir='CodeFormer/weights/realesrgan', progress=True, file_name=None)
+
+# download images
+torch.hub.download_url_to_file(
+ 'https://replicate.com/api/models/sczhou/codeformer/files/fa3fe3d1-76b0-4ca8-ac0d-0a925cb0ff54/06.png',
+ '01.png')
+torch.hub.download_url_to_file(
+ 'https://replicate.com/api/models/sczhou/codeformer/files/a1daba8e-af14-4b00-86a4-69cec9619b53/04.jpg',
+ '02.jpg')
+torch.hub.download_url_to_file(
+ 'https://replicate.com/api/models/sczhou/codeformer/files/542d64f9-1712-4de7-85f7-3863009a7c3d/03.jpg',
+ '03.jpg')
+torch.hub.download_url_to_file(
+ 'https://replicate.com/api/models/sczhou/codeformer/files/a11098b0-a18a-4c02-a19a-9a7045d68426/010.jpg',
+ '04.jpg')
+torch.hub.download_url_to_file(
+ 'https://replicate.com/api/models/sczhou/codeformer/files/7cf19c2c-e0cf-4712-9af8-cf5bdbb8d0ee/012.jpg',
+ '05.jpg')
+
+def imread(img_path):
+ img = cv2.imread(img_path)
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
+ return img
+
+# set enhancer with RealESRGAN
+def set_realesrgan():
+ # half = True if torch.cuda.is_available() else False
+ half = True if gpu_is_available() else False
+ model = RRDBNet(
+ num_in_ch=3,
+ num_out_ch=3,
+ num_feat=64,
+ num_block=23,
+ num_grow_ch=32,
+ scale=2,
+ )
+ upsampler = RealESRGANer(
+ scale=2,
+ model_path="CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth",
+ model=model,
+ tile=400,
+ tile_pad=40,
+ pre_pad=0,
+ half=half,
+ )
+ return upsampler
+
+upsampler = set_realesrgan()
+# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+device = get_device()
+codeformer_net = ARCH_REGISTRY.get("CodeFormer")(
+ dim_embd=512,
+ codebook_size=1024,
+ n_head=8,
+ n_layers=9,
+ connect_list=["32", "64", "128", "256"],
+).to(device)
+ckpt_path = "CodeFormer/weights/CodeFormer/codeformer.pth"
+checkpoint = torch.load(ckpt_path)["params_ema"]
+codeformer_net.load_state_dict(checkpoint)
+codeformer_net.eval()
+
+os.makedirs('output', exist_ok=True)
+
+def inference(image, background_enhance, face_upsample, upscale, codeformer_fidelity):
+ """Run a single prediction on the model"""
+ try: # global try
+ # take the default setting for the demo
+ has_aligned = False
+ only_center_face = False
+ draw_box = False
+ detection_model = "retinaface_resnet50"
+ print('Inp:', image, background_enhance, face_upsample, upscale, codeformer_fidelity)
+
+ img = cv2.imread(str(image), cv2.IMREAD_COLOR)
+ print('\timage size:', img.shape)
+
+ upscale = int(upscale) # convert type to int
+ if upscale > 4: # avoid memory exceeded due to too large upscale
+ upscale = 4
+ if upscale > 2 and max(img.shape[:2])>1000: # avoid memory exceeded due to too large img resolution
+ upscale = 2
+ if max(img.shape[:2]) > 1500: # avoid memory exceeded due to too large img resolution
+ upscale = 1
+ background_enhance = False
+ face_upsample = False
+
+ face_helper = FaceRestoreHelper(
+ upscale,
+ face_size=512,
+ crop_ratio=(1, 1),
+ det_model=detection_model,
+ save_ext="png",
+ use_parse=True,
+ device=device,
+ )
+ bg_upsampler = upsampler if background_enhance else None
+ face_upsampler = upsampler if face_upsample else None
+
+ if has_aligned:
+ # the input faces are already cropped and aligned
+ img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
+ face_helper.is_gray = is_gray(img, threshold=5)
+ if face_helper.is_gray:
+ print('\tgrayscale input: True')
+ face_helper.cropped_faces = [img]
+ else:
+ face_helper.read_image(img)
+ # get face landmarks for each face
+ num_det_faces = face_helper.get_face_landmarks_5(
+ only_center_face=only_center_face, resize=640, eye_dist_threshold=5
+ )
+ print(f'\tdetect {num_det_faces} faces')
+ # align and warp each face
+ face_helper.align_warp_face()
+
+ # face restoration for each cropped face
+ for idx, cropped_face in enumerate(face_helper.cropped_faces):
+ # prepare data
+ cropped_face_t = img2tensor(
+ cropped_face / 255.0, bgr2rgb=True, float32=True
+ )
+ normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
+ cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
+
+ try:
+ with torch.no_grad():
+ output = codeformer_net(
+ cropped_face_t, w=codeformer_fidelity, adain=True
+ )[0]
+ restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
+ del output
+ torch.cuda.empty_cache()
+ except RuntimeError as error:
+ print(f"Failed inference for CodeFormer: {error}")
+ restored_face = tensor2img(
+ cropped_face_t, rgb2bgr=True, min_max=(-1, 1)
+ )
+
+ restored_face = restored_face.astype("uint8")
+ face_helper.add_restored_face(restored_face)
+
+ # paste_back
+ if not has_aligned:
+ # upsample the background
+ if bg_upsampler is not None:
+ # Now only support RealESRGAN for upsampling background
+ bg_img = bg_upsampler.enhance(img, outscale=upscale)[0]
+ else:
+ bg_img = None
+ face_helper.get_inverse_affine(None)
+ # paste each restored face to the input image
+ if face_upsample and face_upsampler is not None:
+ restored_img = face_helper.paste_faces_to_input_image(
+ upsample_img=bg_img,
+ draw_box=draw_box,
+ face_upsampler=face_upsampler,
+ )
+ else:
+ restored_img = face_helper.paste_faces_to_input_image(
+ upsample_img=bg_img, draw_box=draw_box
+ )
+
+ # save restored img
+ save_path = f'output/out.png'
+ imwrite(restored_img, str(save_path))
+
+ restored_img = cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
+ return restored_img, save_path
+ except Exception as error:
+ print('Global exception', error)
+ return None, None
+
+
+title = "CodeFormer: Robust Face Restoration and Enhancement Network"
+description = r"""
+Official Gradio demo for Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurIPS 2022).
+🔥 CodeFormer is a robust face restoration algorithm for old photos or AI-generated faces.
+🤗 Try CodeFormer for improved stable-diffusion generation!
+"""
+article = r"""
+If CodeFormer is helpful, please help to ⭐ the Github Repo. Thanks!
+[](https://github.com/sczhou/CodeFormer)
+
+---
+
+📝 **Citation**
+
+If our work is useful for your research, please consider citing:
+```bibtex
+@inproceedings{zhou2022codeformer,
+ author = {Zhou, Shangchen and Chan, Kelvin C.K. and Li, Chongyi and Loy, Chen Change},
+ title = {Towards Robust Blind Face Restoration with Codebook Lookup TransFormer},
+ booktitle = {NeurIPS},
+ year = {2022}
+}
+```
+
+📋 **License**
+
+This project is licensed under S-Lab License 1.0.
+Redistribution and use for non-commercial purposes should follow this license.
+
+📧 **Contact**
+
+If you have any questions, please feel free to reach me out at shangchenzhou@gmail.com.
+
+
+ 🤗 Find Me:
+

+

+
+
+
+"""
+
+demo = gr.Interface(
+ inference, [
+ gr.inputs.Image(type="filepath", label="Input"),
+ gr.inputs.Checkbox(default=True, label="Background_Enhance"),
+ gr.inputs.Checkbox(default=True, label="Face_Upsample"),
+ gr.inputs.Number(default=2, label="Rescaling_Factor (up to 4)"),
+ gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity (0 for better quality, 1 for better identity)')
+ ], [
+ gr.outputs.Image(type="numpy", label="Output"),
+ gr.outputs.File(label="Download the output")
+ ],
+ title=title,
+ description=description,
+ article=article,
+ examples=[
+ ['01.png', True, True, 2, 0.7],
+ ['02.jpg', True, True, 2, 0.7],
+ ['03.jpg', True, True, 2, 0.7],
+ ['04.jpg', True, True, 2, 0.1],
+ ['05.jpg', True, True, 2, 0.1]
+ ]
+ )
+
+demo.queue(concurrency_count=2)
+demo.launch()
\ No newline at end of file
diff --git a/CodeFormer/web-demos/replicate/cog.yaml b/CodeFormer/web-demos/replicate/cog.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..3f458969086e462ca4bdf888703a38e51016a9b1
--- /dev/null
+++ b/CodeFormer/web-demos/replicate/cog.yaml
@@ -0,0 +1,30 @@
+"""
+This file is used for deploying replicate demo:
+https://replicate.com/sczhou/codeformer
+"""
+
+build:
+ gpu: true
+ cuda: "11.3"
+ python_version: "3.8"
+ system_packages:
+ - "libgl1-mesa-glx"
+ - "libglib2.0-0"
+ python_packages:
+ - "ipython==8.4.0"
+ - "future==0.18.2"
+ - "lmdb==1.3.0"
+ - "scikit-image==0.19.3"
+ - "torch==1.11.0 --extra-index-url=https://download.pytorch.org/whl/cu113"
+ - "torchvision==0.12.0 --extra-index-url=https://download.pytorch.org/whl/cu113"
+ - "scipy==1.9.0"
+ - "gdown==4.5.1"
+ - "pyyaml==6.0"
+ - "tb-nightly==2.11.0a20220906"
+ - "tqdm==4.64.1"
+ - "yapf==0.32.0"
+ - "lpips==0.1.4"
+ - "Pillow==9.2.0"
+ - "opencv-python==4.6.0.66"
+
+predict: "predict.py:Predictor"
diff --git a/CodeFormer/web-demos/replicate/predict.py b/CodeFormer/web-demos/replicate/predict.py
new file mode 100644
index 0000000000000000000000000000000000000000..1b73cbcdc142a85f72a78b646249ae8b4e68f075
--- /dev/null
+++ b/CodeFormer/web-demos/replicate/predict.py
@@ -0,0 +1,191 @@
+"""
+This file is used for deploying replicate demo:
+https://replicate.com/sczhou/codeformer
+running: cog predict -i image=@inputs/whole_imgs/04.jpg -i codeformer_fidelity=0.5 -i upscale=2
+push: cog push r8.im/sczhou/codeformer
+"""
+
+import tempfile
+import cv2
+import torch
+from torchvision.transforms.functional import normalize
+try:
+ from cog import BasePredictor, Input, Path
+except Exception:
+ print('please install cog package')
+
+from basicsr.archs.rrdbnet_arch import RRDBNet
+from basicsr.utils import imwrite, img2tensor, tensor2img
+from basicsr.utils.realesrgan_utils import RealESRGANer
+from basicsr.utils.misc import gpu_is_available
+from basicsr.utils.registry import ARCH_REGISTRY
+
+from facelib.utils.face_restoration_helper import FaceRestoreHelper
+
+class Predictor(BasePredictor):
+ def setup(self):
+ """Load the model into memory to make running multiple predictions efficient"""
+ self.device = "cuda:0"
+ self.upsampler = set_realesrgan()
+ self.net = ARCH_REGISTRY.get("CodeFormer")(
+ dim_embd=512,
+ codebook_size=1024,
+ n_head=8,
+ n_layers=9,
+ connect_list=["32", "64", "128", "256"],
+ ).to(self.device)
+ ckpt_path = "weights/CodeFormer/codeformer.pth"
+ checkpoint = torch.load(ckpt_path)[
+ "params_ema"
+ ] # update file permission if cannot load
+ self.net.load_state_dict(checkpoint)
+ self.net.eval()
+
+ def predict(
+ self,
+ image: Path = Input(description="Input image"),
+ codeformer_fidelity: float = Input(
+ default=0.5,
+ ge=0,
+ le=1,
+ description="Balance the quality (lower number) and fidelity (higher number).",
+ ),
+ background_enhance: bool = Input(
+ description="Enhance background image with Real-ESRGAN", default=True
+ ),
+ face_upsample: bool = Input(
+ description="Upsample restored faces for high-resolution AI-created images",
+ default=True,
+ ),
+ upscale: int = Input(
+ description="The final upsampling scale of the image",
+ default=2,
+ ),
+ ) -> Path:
+ """Run a single prediction on the model"""
+
+ # take the default setting for the demo
+ has_aligned = False
+ only_center_face = False
+ draw_box = False
+ detection_model = "retinaface_resnet50"
+
+ self.face_helper = FaceRestoreHelper(
+ upscale,
+ face_size=512,
+ crop_ratio=(1, 1),
+ det_model=detection_model,
+ save_ext="png",
+ use_parse=True,
+ device=self.device,
+ )
+
+ bg_upsampler = self.upsampler if background_enhance else None
+ face_upsampler = self.upsampler if face_upsample else None
+
+ img = cv2.imread(str(image), cv2.IMREAD_COLOR)
+
+ if has_aligned:
+ # the input faces are already cropped and aligned
+ img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
+ self.face_helper.cropped_faces = [img]
+ else:
+ self.face_helper.read_image(img)
+ # get face landmarks for each face
+ num_det_faces = self.face_helper.get_face_landmarks_5(
+ only_center_face=only_center_face, resize=640, eye_dist_threshold=5
+ )
+ print(f"\tdetect {num_det_faces} faces")
+ # align and warp each face
+ self.face_helper.align_warp_face()
+
+ # face restoration for each cropped face
+ for idx, cropped_face in enumerate(self.face_helper.cropped_faces):
+ # prepare data
+ cropped_face_t = img2tensor(
+ cropped_face / 255.0, bgr2rgb=True, float32=True
+ )
+ normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
+ cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device)
+
+ try:
+ with torch.no_grad():
+ output = self.net(
+ cropped_face_t, w=codeformer_fidelity, adain=True
+ )[0]
+ restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
+ del output
+ torch.cuda.empty_cache()
+ except Exception as error:
+ print(f"\tFailed inference for CodeFormer: {error}")
+ restored_face = tensor2img(
+ cropped_face_t, rgb2bgr=True, min_max=(-1, 1)
+ )
+
+ restored_face = restored_face.astype("uint8")
+ self.face_helper.add_restored_face(restored_face)
+
+ # paste_back
+ if not has_aligned:
+ # upsample the background
+ if bg_upsampler is not None:
+ # Now only support RealESRGAN for upsampling background
+ bg_img = bg_upsampler.enhance(img, outscale=upscale)[0]
+ else:
+ bg_img = None
+ self.face_helper.get_inverse_affine(None)
+ # paste each restored face to the input image
+ if face_upsample and face_upsampler is not None:
+ restored_img = self.face_helper.paste_faces_to_input_image(
+ upsample_img=bg_img,
+ draw_box=draw_box,
+ face_upsampler=face_upsampler,
+ )
+ else:
+ restored_img = self.face_helper.paste_faces_to_input_image(
+ upsample_img=bg_img, draw_box=draw_box
+ )
+
+ # save restored img
+ out_path = Path(tempfile.mkdtemp()) / 'output.png'
+ imwrite(restored_img, str(out_path))
+
+ return out_path
+
+
+def imread(img_path):
+ img = cv2.imread(img_path)
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
+ return img
+
+
+def set_realesrgan():
+ # if not torch.cuda.is_available(): # CPU
+ if not gpu_is_available(): # CPU
+ import warnings
+
+ warnings.warn(
+ "The unoptimized RealESRGAN is slow on CPU. We do not use it. "
+ "If you really want to use it, please modify the corresponding codes.",
+ category=RuntimeWarning,
+ )
+ upsampler = None
+ else:
+ model = RRDBNet(
+ num_in_ch=3,
+ num_out_ch=3,
+ num_feat=64,
+ num_block=23,
+ num_grow_ch=32,
+ scale=2,
+ )
+ upsampler = RealESRGANer(
+ scale=2,
+ model_path="./weights/realesrgan/RealESRGAN_x2plus.pth",
+ model=model,
+ tile=400,
+ tile_pad=40,
+ pre_pad=0,
+ half=True,
+ )
+ return upsampler
diff --git a/CodeFormer/weights/CodeFormer/.gitkeep b/CodeFormer/weights/CodeFormer/.gitkeep
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/CodeFormer/weights/README.md b/CodeFormer/weights/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..67ad334bd672eeb9f82813cd54e8885331bbb2f2
--- /dev/null
+++ b/CodeFormer/weights/README.md
@@ -0,0 +1,3 @@
+# Weights
+
+Put the downloaded pre-trained models to this folder.
\ No newline at end of file
diff --git a/CodeFormer/weights/facelib/.gitkeep b/CodeFormer/weights/facelib/.gitkeep
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..2055118b493310a9d4f053d94a4fab7df698793f
--- /dev/null
+++ b/app.py
@@ -0,0 +1,148 @@
+import os
+os.environ["OMP_NUM_THREADS"] = "1"
+import gradio as gr
+import cv2
+import shutil
+import uuid
+import insightface
+from insightface.app import FaceAnalysis
+from huggingface_hub import hf_hub_download
+import subprocess
+
+
+# -------------------------------------------------
+# Paths
+# -------------------------------------------------
+REPO_ID = "HariLogicgo/face_swap_models" # <- your HF repo for models
+BASE_DIR = "./workspace"
+UPLOAD_DIR = os.path.join(BASE_DIR, "uploads")
+RESULT_DIR = os.path.join(BASE_DIR, "results")
+MODELS_DIR = "./models"
+
+os.makedirs(UPLOAD_DIR, exist_ok=True)
+os.makedirs(RESULT_DIR, exist_ok=True)
+
+# -------------------------------------------------
+# Download models once
+# -------------------------------------------------
+inswapper_path = hf_hub_download(
+ repo_id=REPO_ID,
+ filename="models/inswapper_128.onnx",
+ repo_type="model",
+ local_dir=MODELS_DIR
+)
+
+buffalo_files = [
+ "1k3d68.onnx",
+ "2d106det.onnx",
+ "genderage.onnx",
+ "det_10g.onnx",
+ "w600k_r50.onnx"
+]
+for f in buffalo_files:
+ hf_hub_download(
+ repo_id=REPO_ID,
+ filename=f"models/buffalo_l/{f}",
+ repo_type="model",
+ local_dir=MODELS_DIR
+ )
+
+# -------------------------------------------------
+# Initialize face analysis and swapper
+# -------------------------------------------------
+app = FaceAnalysis(name="buffalo_l", root=MODELS_DIR, providers=['CPUExecutionProvider'])
+app.prepare(ctx_id=0, det_size=(640, 640))
+swapper = insightface.model_zoo.get_model(inswapper_path, providers=['CPUExecutionProvider'])
+
+# -------------------------------------------------
+# CodeFormer setup
+# -------------------------------------------------
+CODEFORMER_PATH = "CodeFormer/inference_codeformer.py"
+
+def ensure_codeformer():
+ if not os.path.exists("CodeFormer"):
+ subprocess.run("git clone https://github.com/sczhou/CodeFormer.git", shell=True)
+ subprocess.run("pip install -r CodeFormer/requirements.txt", shell=True)
+ subprocess.run("python CodeFormer/basicsr/setup.py develop", shell=True)
+ subprocess.run("python CodeFormer/scripts/download_pretrained_models.py facelib", shell=True)
+ subprocess.run("python CodeFormer/scripts/download_pretrained_models.py CodeFormer", shell=True)
+
+ensure_codeformer()
+
+# -------------------------------------------------
+# Pipeline Function
+# -------------------------------------------------
+def face_swap_and_enhance(src_img, tgt_img, fidelity=0.7, background_enhance=True, face_upsample=True):
+ try:
+ src_bgr = cv2.cvtColor(src_img, cv2.COLOR_RGB2BGR)
+ tgt_bgr = cv2.cvtColor(tgt_img, cv2.COLOR_RGB2BGR)
+
+ src_faces = app.get(src_bgr)
+ tgt_faces = app.get(tgt_bgr)
+ if not src_faces or not tgt_faces:
+ return None, None, "❌ Face not detected in one of the images."
+
+ shutil.rmtree(UPLOAD_DIR, ignore_errors=True)
+ shutil.rmtree(RESULT_DIR, ignore_errors=True)
+ os.makedirs(UPLOAD_DIR, exist_ok=True)
+ os.makedirs(RESULT_DIR, exist_ok=True)
+
+ unique_name = f"swapped_{uuid.uuid4().hex[:8]}.jpg"
+ swapped_path = os.path.join(UPLOAD_DIR, unique_name)
+ swapped_bgr = swapper.get(tgt_bgr, tgt_faces[0], src_faces[0])
+ cv2.imwrite(swapped_path, swapped_bgr)
+
+ cmd = f"python {CODEFORMER_PATH} -w {fidelity:.2f} --input_path {UPLOAD_DIR} --output_path {RESULT_DIR}"
+ if background_enhance:
+ cmd += " --bg_upsampler realesrgan"
+ if face_upsample:
+ cmd += " --face_upsample"
+
+ result = subprocess.run(cmd, shell=True, capture_output=True, text=True)
+ if result.returncode != 0:
+ return None, None, f"❌ CodeFormer failed:\n{result.stderr}"
+
+ final_path = None
+ for root, _, files in os.walk(RESULT_DIR):
+ for f in files:
+ if f.endswith((".png", ".jpg")):
+ final_path = os.path.join(root, f)
+ break
+ if final_path:
+ break
+
+ if not final_path or not os.path.exists(final_path):
+ return None, None, "❌ CodeFormer output missing."
+
+ final_img = cv2.cvtColor(cv2.imread(final_path), cv2.COLOR_BGR2RGB)
+ return final_img, final_path, ""
+
+ except Exception as e:
+ return None, None, f"❌ Error: {str(e)}"
+
+# -------------------------------------------------
+# Gradio Interface
+# -------------------------------------------------
+with gr.Blocks() as demo:
+ gr.Markdown("## 🧑🤝🧑 Face Swap + CodeFormer Enhancement")
+ with gr.Row():
+ src_input = gr.Image(type="numpy", label="Upload Source Face")
+ tgt_input = gr.Image(type="numpy", label="Upload Target Image")
+ with gr.Row():
+ fidelity = gr.Slider(0, 1, value=0.7, step=0.01, label="CodeFormer Fidelity")
+ bg = gr.Checkbox(value=True, label="Enhance Background")
+ face_up = gr.Checkbox(value=True, label="Face Upsample")
+ btn = gr.Button("🚀 Run Face Swap + Enhance")
+
+ output_img = gr.Image(type="numpy", label="Enhanced Output")
+ download = gr.File(label="⬇️ Download Enhanced Image")
+ error_box = gr.Textbox(label="Logs / Errors", interactive=False)
+
+ def process(src, tgt, f, b, fu):
+ img, path, err = face_swap_and_enhance(src, tgt, f, b, fu)
+ return img, path, err
+
+ btn.click(process, [src_input, tgt_input, fidelity, bg, face_up],
+ [output_img, download, error_box])
+
+demo.launch()
\ No newline at end of file
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..1ea0e2d9dc4371e8cd4e229c1e2d34aa2403218d
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,36 @@
+# Core deps
+numpy<2
+Pillow
+scipy
+scikit-image
+tqdm
+yapf
+addict
+future
+lmdb
+pyyaml
+requests
+gdown
+opencv-python
+
+# Torch (pinned for CodeFormer compatibility)
+torch==1.12.1
+torchvision==0.13.1
+
+# CodeFormer/RealESRGAN deps
+basicsr==1.4.2
+realesrgan
+lpips
+facexlib==0.2.5
+
+# Face swap / insightface
+insightface
+onnxruntime
+onnx
+
+# App deps
+gradio
+huggingface_hub
+
+# Optional but included in CodeFormer repo
+tb-nightly
diff --git a/runtime.txt b/runtime.txt
new file mode 100644
index 0000000000000000000000000000000000000000..f31904fcb9165e71f5777bee4b1b5dc1cd22b4b7
--- /dev/null
+++ b/runtime.txt
@@ -0,0 +1 @@
+python-3.10
\ No newline at end of file