File size: 2,224 Bytes
3f2900f
b87f04a
3f2900f
3d0fb66
2d26215
3f2900f
3d0fb66
b87f04a
9dd7f05
888022c
b87f04a
 
 
 
 
 
 
 
 
 
 
5545870
f80709d
 
 
b87f04a
63c8ee6
b87f04a
 
3739aec
b87f04a
 
 
3f2900f
b87f04a
760514e
b87f04a
 
 
ad9f68c
3f2900f
b87f04a
80f2b5c
03b4c46
b87f04a
3f2900f
 
c7e5485
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import gradio as gr
from transformers import pipeline, AutoTokenizer
import torch
import spaces
import os

@spaces.GPU
def load_model(model_name):
    return pipeline("text-generation", model=model_name, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True, token=os.environ["token"])
@spaces.GPU()
def generate(
    model_name,
    user_input,
    temperature=0.4,
    top_p=0.95,
    top_k=50,
    max_new_tokens=256,
):
    pipe = load_model(model_name)

    # Set tokenize correctly. Otherwise ticking the box breaks it.
    if model_name == "M4-ai/tau-1.8B":
        prompt = user_input
    else:
        prompt = f"<|im_start|>user\n{user_input}<|im_end|>\n<|im_start|>assistant\n"
    outputs = pipe(prompt, max_new_tokens=max_new_tokens, do_sample=True,
                   temperature=temperature, top_k=top_k, top_p=top_p)
    return outputs[0]["generated_text"]

model_choices = ["Locutusque/OpenCerebrum-1.0-7B-beta", "M4-ai/NeuralReyna-Mini-1.8B-v0.2", "Locutusque/Hyperion-3.0-Mistral-7B-DPO", "Locutusque/Hyperion-3.0-Mistral-7B-alpha", "M4-ai/tau-1.8B", "Locutusque/Hercules-4.0-Mistral-v0.2-7B", "Locutusque/Hercules-2.5-Mistral-7B", "M4-ai/tau-0.5B"]
# What at the best options? 
g = gr.Interface(
    fn=generate,
    inputs=[
        gr.components.Dropdown(choices=model_choices, label="Model", value=model_choices[0], interactive=True),
        gr.components.Textbox(lines=2, label="Prompt", value="Write me a Python program that calculates the factorial of a given number."),
        gr.components.Slider(minimum=0, maximum=1, value=0.4, label="Temperature"),
        gr.components.Slider(minimum=0, maximum=1, value=0.95, label="Top p"),
        gr.components.Slider(minimum=0, maximum=100, step=1, value=50, label="Top k"),
        gr.components.Slider(minimum=1, maximum=2048, step=1, value=1024, label="Max tokens"),  
    ],
    outputs=[gr.Textbox(lines=10, label="Output")],
    title="Locutusque's Language Models",
    description="Try out Locutusque's (or other's) language models here! Credit goes to Mediocreatmybest for this space. You may also find some experimental preview models that have not been made public here.",
    concurrency_limit=1
)

g.launch(max_threads=4)