Add throughput estimates, architecture details, export feature, and tips guide
Browse filesNew features:
- Tokens/second throughput estimates based on GPU memory bandwidth
- Model architecture details table (hidden size, heads, GQA ratio, vocab, max context)
- Context length scaling table showing KV cache at different lengths
- Export Report button to generate shareable text reports
- Tips & Guide tab with VRAM rules of thumb and recommended setups
- GPU bandwidth specs for all hardware (Consumer, Apple Silicon, Cloud)
- Best value AND fastest GPU recommendations
- Quantization quality indicators
- More example models (Hermes, Yi)
- Cross-model comparison set (Llama vs Mistral vs Qwen vs Gemma)
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
app.py
CHANGED
|
@@ -8,39 +8,39 @@ from functools import lru_cache
|
|
| 8 |
|
| 9 |
api = HfApi()
|
| 10 |
|
| 11 |
-
# Consumer GPUs (
|
| 12 |
CONSUMER_GPUS = {
|
| 13 |
-
"RTX 3080": 10,
|
| 14 |
-
"RTX 3080 Ti": 12,
|
| 15 |
-
"RTX 3090": 24,
|
| 16 |
-
"RTX 3090 Ti": 24,
|
| 17 |
-
"RTX 4080": 16,
|
| 18 |
-
"RTX 4080 Super": 16,
|
| 19 |
-
"RTX 4090": 24,
|
| 20 |
-
"RTX 5090": 32,
|
| 21 |
}
|
| 22 |
|
| 23 |
-
# Apple Silicon (
|
| 24 |
APPLE_GPUS = {
|
| 25 |
-
"M1 Max": 64,
|
| 26 |
-
"M2 Max": 96,
|
| 27 |
-
"M2 Ultra": 192,
|
| 28 |
-
"M3 Max": 128,
|
| 29 |
-
"M4 Max": 128,
|
| 30 |
}
|
| 31 |
|
| 32 |
-
# Cloud/Datacenter GPUs (
|
| 33 |
CLOUD_GPUS = {
|
| 34 |
-
"T4": (16, 0.35),
|
| 35 |
-
"L4": (24, 0.70),
|
| 36 |
-
"A10G": (24, 1.00),
|
| 37 |
-
"RTX A5000": (24, 0.80),
|
| 38 |
-
"RTX A6000": (48, 1.50),
|
| 39 |
-
"L40S": (48, 1.20),
|
| 40 |
-
"A100 40GB": (40, 3.00),
|
| 41 |
-
"A100 80GB": (80, 5.00),
|
| 42 |
-
"H100 80GB": (80, 8.00),
|
| 43 |
-
"H100 NVL": (94, 10.00),
|
| 44 |
}
|
| 45 |
|
| 46 |
DTYPE_BYTES = {
|
|
@@ -59,15 +59,6 @@ FRAMEWORKS = {
|
|
| 59 |
"Ollama": 1.08,
|
| 60 |
}
|
| 61 |
|
| 62 |
-
CONTEXT_PRESETS = {
|
| 63 |
-
"2K (fast chat)": 2048,
|
| 64 |
-
"4K (standard)": 4096,
|
| 65 |
-
"8K (extended)": 8192,
|
| 66 |
-
"16K (long docs)": 16384,
|
| 67 |
-
"32K (very long)": 32768,
|
| 68 |
-
"128K (full context)": 131072,
|
| 69 |
-
}
|
| 70 |
-
|
| 71 |
|
| 72 |
def bytes_to_gb(b):
|
| 73 |
return b / (1024 ** 3)
|
|
@@ -101,6 +92,18 @@ def get_params(info):
|
|
| 101 |
return 0, "F16"
|
| 102 |
|
| 103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
def calculate(model_id, context, batch, mode, framework, num_gpus, lora_rank):
|
| 105 |
"""Main calculation function"""
|
| 106 |
try:
|
|
@@ -128,10 +131,14 @@ def calculate(model_id, context, batch, mode, framework, num_gpus, lora_rank):
|
|
| 128 |
layers = config.get("num_hidden_layers", config.get("n_layer", 32))
|
| 129 |
kv_heads = config.get("num_key_value_heads", config.get("num_attention_heads", 32))
|
| 130 |
head_dim = config.get("head_dim", 128)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
if not head_dim:
|
| 132 |
-
|
| 133 |
-
heads = config.get("num_attention_heads", 32)
|
| 134 |
-
head_dim = hidden // heads if heads else 128
|
| 135 |
|
| 136 |
kv_bytes = 2 * layers * batch * context * kv_heads * head_dim * dtype_bytes
|
| 137 |
kv_gb = bytes_to_gb(kv_bytes)
|
|
@@ -141,6 +148,20 @@ def calculate(model_id, context, batch, mode, framework, num_gpus, lora_rank):
|
|
| 141 |
out.append("**" + str(round(params_b, 1)) + "B parameters** | " + dtype + " | " + str(layers) + " layers")
|
| 142 |
out.append("")
|
| 143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
if mode == "Training (Full)":
|
| 145 |
grad_gb = weights_gb
|
| 146 |
opt_gb = bytes_to_gb(params * 8)
|
|
@@ -199,46 +220,56 @@ def calculate(model_id, context, batch, mode, framework, num_gpus, lora_rank):
|
|
| 199 |
out.append("")
|
| 200 |
out.append("## Total Required: " + str(round(total, 1)) + " GB")
|
| 201 |
|
| 202 |
-
# Consumer GPUs section with colors
|
| 203 |
out.append("")
|
| 204 |
out.append("### Consumer GPUs")
|
| 205 |
-
out.append("| GPU | VRAM | Status | Headroom |")
|
| 206 |
-
out.append("
|
| 207 |
-
for gpu, vram in CONSUMER_GPUS.items():
|
| 208 |
hr = vram - effective
|
| 209 |
if hr >= 2:
|
| 210 |
status = "🟢 Good fit"
|
| 211 |
elif hr >= 0:
|
| 212 |
-
status = "🟡 Tight
|
| 213 |
else:
|
| 214 |
-
status = "🔴
|
| 215 |
sign = "+" if hr >= 0 else ""
|
| 216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
# Apple Silicon section
|
| 219 |
out.append("")
|
| 220 |
out.append("### Apple Silicon (Unified Memory)")
|
| 221 |
-
out.append("| Chip | Memory | Status | Headroom |")
|
| 222 |
-
out.append("
|
| 223 |
-
for gpu, vram in APPLE_GPUS.items():
|
| 224 |
hr = vram - effective
|
| 225 |
if hr >= 10:
|
| 226 |
status = "🟢 Excellent"
|
| 227 |
elif hr >= 0:
|
| 228 |
status = "🟡 Usable"
|
| 229 |
else:
|
| 230 |
-
status = "🔴
|
| 231 |
sign = "+" if hr >= 0 else ""
|
| 232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
|
| 234 |
-
# Cloud GPUs section with costs
|
| 235 |
out.append("")
|
| 236 |
out.append("### Cloud GPU Options")
|
| 237 |
-
out.append("| GPU | VRAM | Status | $/hour | $/day
|
| 238 |
-
out.append("
|
| 239 |
|
| 240 |
cloud_options = []
|
| 241 |
-
for gpu, (vram, cost) in CLOUD_GPUS.items():
|
| 242 |
hr = vram - effective
|
| 243 |
if hr >= 2:
|
| 244 |
status = "🟢 Good"
|
|
@@ -247,34 +278,65 @@ def calculate(model_id, context, batch, mode, framework, num_gpus, lora_rank):
|
|
| 247 |
else:
|
| 248 |
status = "🔴 No"
|
| 249 |
daily = cost * 8
|
| 250 |
-
|
| 251 |
-
|
|
|
|
|
|
|
|
|
|
| 252 |
|
| 253 |
# Sort by cost for those that fit
|
| 254 |
cloud_options.sort(key=lambda x: (x[2] < 0, x[4]))
|
| 255 |
|
| 256 |
-
for gpu, vram, hr, status, cost, daily,
|
| 257 |
sign = "+" if hr >= 0 else ""
|
| 258 |
-
|
|
|
|
| 259 |
|
| 260 |
# Best value recommendation
|
| 261 |
-
fitting_gpus = [(gpu, cost) for gpu,
|
| 262 |
if fitting_gpus:
|
| 263 |
fitting_gpus.sort(key=lambda x: x[1])
|
| 264 |
best = fitting_gpus[0]
|
| 265 |
out.append("")
|
| 266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
|
| 268 |
# Quantization suggestions if model is large
|
| 269 |
if effective > 24:
|
| 270 |
out.append("")
|
| 271 |
out.append("### Quantization Options (to fit consumer GPUs)")
|
| 272 |
-
out.append("| Method |
|
| 273 |
-
out.append("
|
| 274 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
size = bytes_to_gb(params * mult) * 1.1
|
| 276 |
fits = "🟢 Yes" if size <= 24 else "🔴 No"
|
| 277 |
-
out.append("| " + name + " | " + str(round(size, 1)) + "GB | " + fits + " |")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
|
| 279 |
return "\n".join(out)
|
| 280 |
except Exception as e:
|
|
@@ -331,10 +393,46 @@ def compare(models_text, context):
|
|
| 331 |
return "Error: " + str(e)
|
| 332 |
|
| 333 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
# Build the interface
|
| 335 |
with gr.Blocks(title="VRAM Calculator", theme=gr.themes.Soft()) as demo:
|
| 336 |
gr.Markdown("# VRAM Calculator for LLMs")
|
| 337 |
-
gr.Markdown("Estimate VRAM requirements for HuggingFace models
|
| 338 |
|
| 339 |
with gr.Tabs():
|
| 340 |
with gr.TabItem("Calculator"):
|
|
@@ -391,8 +489,12 @@ with gr.Blocks(title="VRAM Calculator", theme=gr.themes.Soft()) as demo:
|
|
| 391 |
info="Higher = more parameters"
|
| 392 |
)
|
| 393 |
|
| 394 |
-
|
|
|
|
|
|
|
|
|
|
| 395 |
output = gr.Markdown()
|
|
|
|
| 396 |
|
| 397 |
calc_btn.click(
|
| 398 |
fn=calculate,
|
|
@@ -400,6 +502,16 @@ with gr.Blocks(title="VRAM Calculator", theme=gr.themes.Soft()) as demo:
|
|
| 400 |
outputs=output
|
| 401 |
)
|
| 402 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
gr.Markdown("### Popular Models")
|
| 404 |
gr.Examples(
|
| 405 |
examples=[
|
|
@@ -415,6 +527,8 @@ with gr.Blocks(title="VRAM Calculator", theme=gr.themes.Soft()) as demo:
|
|
| 415 |
["google/gemma-2-27b"],
|
| 416 |
["microsoft/phi-3-mini-4k-instruct"],
|
| 417 |
["deepseek-ai/DeepSeek-V2-Lite"],
|
|
|
|
|
|
|
| 418 |
],
|
| 419 |
inputs=[model_in],
|
| 420 |
label="Click to load"
|
|
@@ -450,37 +564,101 @@ with gr.Blocks(title="VRAM Calculator", theme=gr.themes.Soft()) as demo:
|
|
| 450 |
["mistralai/Mistral-7B-v0.1\nmistralai/Mixtral-8x7B-v0.1"],
|
| 451 |
["Qwen/Qwen2.5-7B\nQwen/Qwen2.5-14B\nQwen/Qwen2.5-72B"],
|
| 452 |
["google/gemma-2-2b\ngoogle/gemma-2-9b\ngoogle/gemma-2-27b"],
|
|
|
|
| 453 |
],
|
| 454 |
inputs=[cmp_in],
|
| 455 |
label="Click to load comparison"
|
| 456 |
)
|
| 457 |
|
| 458 |
with gr.TabItem("GPU Reference"):
|
| 459 |
-
gr.Markdown("## GPU VRAM Reference")
|
|
|
|
|
|
|
| 460 |
gr.Markdown("### Consumer GPUs (NVIDIA GeForce)")
|
| 461 |
-
consumer_md = "| GPU | VRAM |
|
| 462 |
-
for gpu, vram in CONSUMER_GPUS.items():
|
| 463 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 464 |
gr.Markdown(consumer_md)
|
| 465 |
|
| 466 |
gr.Markdown("### Apple Silicon")
|
| 467 |
-
apple_md = "| Chip | Unified Memory | Notes |\n
|
| 468 |
-
for gpu, vram in APPLE_GPUS.items():
|
| 469 |
-
apple_md += "| " + gpu + " | " + str(vram) + "GB | Shared CPU/GPU |\n"
|
| 470 |
gr.Markdown(apple_md)
|
| 471 |
|
| 472 |
gr.Markdown("### Cloud/Datacenter GPUs")
|
| 473 |
-
cloud_md = "| GPU | VRAM |
|
| 474 |
-
for gpu, (vram, cost) in CLOUD_GPUS.items():
|
| 475 |
if vram <= 24:
|
| 476 |
use = "7B models, fine-tuning"
|
| 477 |
elif vram <= 48:
|
| 478 |
use = "13B-30B models"
|
| 479 |
else:
|
| 480 |
use = "70B+ models, training"
|
| 481 |
-
cloud_md += "| " + gpu + " | " + str(vram) + "GB | $" + str(round(cost, 2)) + " | " + use + " |\n"
|
| 482 |
gr.Markdown(cloud_md)
|
| 483 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 484 |
gr.Markdown("---")
|
| 485 |
gr.Markdown("*Estimates are approximate. Actual usage varies by implementation, batch size, and optimizations.*")
|
| 486 |
|
|
|
|
| 8 |
|
| 9 |
api = HfApi()
|
| 10 |
|
| 11 |
+
# Consumer GPUs: (VRAM GB, Memory Bandwidth GB/s)
|
| 12 |
CONSUMER_GPUS = {
|
| 13 |
+
"RTX 3080": (10, 760),
|
| 14 |
+
"RTX 3080 Ti": (12, 912),
|
| 15 |
+
"RTX 3090": (24, 936),
|
| 16 |
+
"RTX 3090 Ti": (24, 1008),
|
| 17 |
+
"RTX 4080": (16, 717),
|
| 18 |
+
"RTX 4080 Super": (16, 736),
|
| 19 |
+
"RTX 4090": (24, 1008),
|
| 20 |
+
"RTX 5090": (32, 1792),
|
| 21 |
}
|
| 22 |
|
| 23 |
+
# Apple Silicon: (Unified Memory GB, Memory Bandwidth GB/s)
|
| 24 |
APPLE_GPUS = {
|
| 25 |
+
"M1 Max": (64, 400),
|
| 26 |
+
"M2 Max": (96, 400),
|
| 27 |
+
"M2 Ultra": (192, 800),
|
| 28 |
+
"M3 Max": (128, 400),
|
| 29 |
+
"M4 Max": (128, 546),
|
| 30 |
}
|
| 31 |
|
| 32 |
+
# Cloud/Datacenter GPUs: (VRAM GB, $/hr, Memory Bandwidth GB/s)
|
| 33 |
CLOUD_GPUS = {
|
| 34 |
+
"T4": (16, 0.35, 320),
|
| 35 |
+
"L4": (24, 0.70, 300),
|
| 36 |
+
"A10G": (24, 1.00, 600),
|
| 37 |
+
"RTX A5000": (24, 0.80, 768),
|
| 38 |
+
"RTX A6000": (48, 1.50, 768),
|
| 39 |
+
"L40S": (48, 1.20, 864),
|
| 40 |
+
"A100 40GB": (40, 3.00, 1555),
|
| 41 |
+
"A100 80GB": (80, 5.00, 2039),
|
| 42 |
+
"H100 80GB": (80, 8.00, 3350),
|
| 43 |
+
"H100 NVL": (94, 10.00, 3938),
|
| 44 |
}
|
| 45 |
|
| 46 |
DTYPE_BYTES = {
|
|
|
|
| 59 |
"Ollama": 1.08,
|
| 60 |
}
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
def bytes_to_gb(b):
|
| 64 |
return b / (1024 ** 3)
|
|
|
|
| 92 |
return 0, "F16"
|
| 93 |
|
| 94 |
|
| 95 |
+
def estimate_throughput(params, bandwidth_gbs, batch_size, dtype_bytes):
|
| 96 |
+
"""Estimate tokens/second based on memory bandwidth (rough approximation)"""
|
| 97 |
+
# Simplified: tok/s ~ bandwidth / (params * dtype_bytes / batch_size)
|
| 98 |
+
# This is a rough estimate; actual throughput depends on many factors
|
| 99 |
+
model_gb = (params * dtype_bytes) / (1024**3)
|
| 100 |
+
if model_gb == 0:
|
| 101 |
+
return 0
|
| 102 |
+
# Rough heuristic: memory-bound inference
|
| 103 |
+
tokens_per_sec = (bandwidth_gbs / model_gb) * batch_size * 0.5 # 50% efficiency factor
|
| 104 |
+
return max(1, int(tokens_per_sec))
|
| 105 |
+
|
| 106 |
+
|
| 107 |
def calculate(model_id, context, batch, mode, framework, num_gpus, lora_rank):
|
| 108 |
"""Main calculation function"""
|
| 109 |
try:
|
|
|
|
| 131 |
layers = config.get("num_hidden_layers", config.get("n_layer", 32))
|
| 132 |
kv_heads = config.get("num_key_value_heads", config.get("num_attention_heads", 32))
|
| 133 |
head_dim = config.get("head_dim", 128)
|
| 134 |
+
hidden_size = config.get("hidden_size", 4096)
|
| 135 |
+
num_heads = config.get("num_attention_heads", 32)
|
| 136 |
+
vocab_size = config.get("vocab_size", 32000)
|
| 137 |
+
intermediate_size = config.get("intermediate_size", hidden_size * 4)
|
| 138 |
+
max_position = config.get("max_position_embeddings", 4096)
|
| 139 |
+
|
| 140 |
if not head_dim:
|
| 141 |
+
head_dim = hidden_size // num_heads if num_heads else 128
|
|
|
|
|
|
|
| 142 |
|
| 143 |
kv_bytes = 2 * layers * batch * context * kv_heads * head_dim * dtype_bytes
|
| 144 |
kv_gb = bytes_to_gb(kv_bytes)
|
|
|
|
| 148 |
out.append("**" + str(round(params_b, 1)) + "B parameters** | " + dtype + " | " + str(layers) + " layers")
|
| 149 |
out.append("")
|
| 150 |
|
| 151 |
+
# Architecture details
|
| 152 |
+
out.append("### Model Architecture")
|
| 153 |
+
out.append("| Property | Value |")
|
| 154 |
+
out.append("|----------|-------|")
|
| 155 |
+
out.append("| Hidden Size | " + str(hidden_size) + " |")
|
| 156 |
+
out.append("| Attention Heads | " + str(num_heads) + " |")
|
| 157 |
+
out.append("| KV Heads (GQA) | " + str(kv_heads) + " |")
|
| 158 |
+
out.append("| Layers | " + str(layers) + " |")
|
| 159 |
+
out.append("| Vocab Size | " + str(vocab_size) + " |")
|
| 160 |
+
out.append("| Max Context | " + str(max_position) + " |")
|
| 161 |
+
if kv_heads != num_heads:
|
| 162 |
+
out.append("| GQA Ratio | " + str(num_heads) + ":" + str(kv_heads) + " |")
|
| 163 |
+
out.append("")
|
| 164 |
+
|
| 165 |
if mode == "Training (Full)":
|
| 166 |
grad_gb = weights_gb
|
| 167 |
opt_gb = bytes_to_gb(params * 8)
|
|
|
|
| 220 |
out.append("")
|
| 221 |
out.append("## Total Required: " + str(round(total, 1)) + " GB")
|
| 222 |
|
| 223 |
+
# Consumer GPUs section with colors and throughput
|
| 224 |
out.append("")
|
| 225 |
out.append("### Consumer GPUs")
|
| 226 |
+
out.append("| GPU | VRAM | Status | Headroom | Est. tok/s |")
|
| 227 |
+
out.append("|-----|------|--------|----------|------------|")
|
| 228 |
+
for gpu, (vram, bandwidth) in CONSUMER_GPUS.items():
|
| 229 |
hr = vram - effective
|
| 230 |
if hr >= 2:
|
| 231 |
status = "🟢 Good fit"
|
| 232 |
elif hr >= 0:
|
| 233 |
+
status = "🟡 Tight"
|
| 234 |
else:
|
| 235 |
+
status = "🔴 No"
|
| 236 |
sign = "+" if hr >= 0 else ""
|
| 237 |
+
if hr >= 0 and mode == "Inference":
|
| 238 |
+
tps = estimate_throughput(params, bandwidth, batch, dtype_bytes)
|
| 239 |
+
tps_str = str(tps)
|
| 240 |
+
else:
|
| 241 |
+
tps_str = "-"
|
| 242 |
+
out.append("| " + gpu + " | " + str(vram) + "GB | " + status + " | " + sign + str(round(hr, 1)) + "GB | " + tps_str + " |")
|
| 243 |
|
| 244 |
# Apple Silicon section
|
| 245 |
out.append("")
|
| 246 |
out.append("### Apple Silicon (Unified Memory)")
|
| 247 |
+
out.append("| Chip | Memory | Status | Headroom | Est. tok/s |")
|
| 248 |
+
out.append("|------|--------|--------|----------|------------|")
|
| 249 |
+
for gpu, (vram, bandwidth) in APPLE_GPUS.items():
|
| 250 |
hr = vram - effective
|
| 251 |
if hr >= 10:
|
| 252 |
status = "🟢 Excellent"
|
| 253 |
elif hr >= 0:
|
| 254 |
status = "🟡 Usable"
|
| 255 |
else:
|
| 256 |
+
status = "🔴 No"
|
| 257 |
sign = "+" if hr >= 0 else ""
|
| 258 |
+
if hr >= 0 and mode == "Inference":
|
| 259 |
+
tps = estimate_throughput(params, bandwidth, batch, dtype_bytes)
|
| 260 |
+
tps_str = str(tps)
|
| 261 |
+
else:
|
| 262 |
+
tps_str = "-"
|
| 263 |
+
out.append("| " + gpu + " | " + str(vram) + "GB | " + status + " | " + sign + str(round(hr, 1)) + "GB | " + tps_str + " |")
|
| 264 |
|
| 265 |
+
# Cloud GPUs section with costs and throughput
|
| 266 |
out.append("")
|
| 267 |
out.append("### Cloud GPU Options")
|
| 268 |
+
out.append("| GPU | VRAM | Status | $/hour | $/day | Est. tok/s |")
|
| 269 |
+
out.append("|-----|------|--------|--------|-------|------------|")
|
| 270 |
|
| 271 |
cloud_options = []
|
| 272 |
+
for gpu, (vram, cost, bandwidth) in CLOUD_GPUS.items():
|
| 273 |
hr = vram - effective
|
| 274 |
if hr >= 2:
|
| 275 |
status = "🟢 Good"
|
|
|
|
| 278 |
else:
|
| 279 |
status = "🔴 No"
|
| 280 |
daily = cost * 8
|
| 281 |
+
if hr >= 0 and mode == "Inference":
|
| 282 |
+
tps = estimate_throughput(params, bandwidth, batch, dtype_bytes)
|
| 283 |
+
else:
|
| 284 |
+
tps = 0
|
| 285 |
+
cloud_options.append((gpu, vram, hr, status, cost, daily, bandwidth, tps))
|
| 286 |
|
| 287 |
# Sort by cost for those that fit
|
| 288 |
cloud_options.sort(key=lambda x: (x[2] < 0, x[4]))
|
| 289 |
|
| 290 |
+
for gpu, vram, hr, status, cost, daily, bandwidth, tps in cloud_options:
|
| 291 |
sign = "+" if hr >= 0 else ""
|
| 292 |
+
tps_str = str(tps) if tps > 0 else "-"
|
| 293 |
+
out.append("| " + gpu + " | " + str(vram) + "GB | " + status + " | $" + str(round(cost, 2)) + " | $" + str(round(daily, 2)) + " | " + tps_str + " |")
|
| 294 |
|
| 295 |
# Best value recommendation
|
| 296 |
+
fitting_gpus = [(gpu, cost, tps) for gpu, vram, hr, status, cost, daily, bw, tps in cloud_options if hr >= 0]
|
| 297 |
if fitting_gpus:
|
| 298 |
fitting_gpus.sort(key=lambda x: x[1])
|
| 299 |
best = fitting_gpus[0]
|
| 300 |
out.append("")
|
| 301 |
+
rec = "**Recommended:** " + best[0] + " at $" + str(round(best[1], 2)) + "/hour"
|
| 302 |
+
if best[2] > 0:
|
| 303 |
+
rec += " (~" + str(best[2]) + " tok/s)"
|
| 304 |
+
out.append(rec)
|
| 305 |
+
|
| 306 |
+
# Best performance option
|
| 307 |
+
if len(fitting_gpus) > 1:
|
| 308 |
+
fitting_gpus.sort(key=lambda x: -x[2])
|
| 309 |
+
fastest = fitting_gpus[0]
|
| 310 |
+
if fastest[0] != best[0] and fastest[2] > 0:
|
| 311 |
+
out.append("**Fastest:** " + fastest[0] + " (~" + str(fastest[2]) + " tok/s)")
|
| 312 |
|
| 313 |
# Quantization suggestions if model is large
|
| 314 |
if effective > 24:
|
| 315 |
out.append("")
|
| 316 |
out.append("### Quantization Options (to fit consumer GPUs)")
|
| 317 |
+
out.append("| Method | Est. Size | Fits 24GB | Quality |")
|
| 318 |
+
out.append("|--------|-----------|-----------|---------|")
|
| 319 |
+
quant_options = [
|
| 320 |
+
("INT8", 1.0, "Excellent"),
|
| 321 |
+
("4-bit (GPTQ/AWQ)", 0.5, "Very Good"),
|
| 322 |
+
("3-bit", 0.375, "Good"),
|
| 323 |
+
("2-bit (extreme)", 0.25, "Degraded"),
|
| 324 |
+
]
|
| 325 |
+
for name, mult, quality in quant_options:
|
| 326 |
size = bytes_to_gb(params * mult) * 1.1
|
| 327 |
fits = "🟢 Yes" if size <= 24 else "🔴 No"
|
| 328 |
+
out.append("| " + name + " | " + str(round(size, 1)) + "GB | " + fits + " | " + quality + " |")
|
| 329 |
+
|
| 330 |
+
# Context scaling info
|
| 331 |
+
out.append("")
|
| 332 |
+
out.append("### Context Length Scaling")
|
| 333 |
+
out.append("| Context | KV Cache | Total Est. |")
|
| 334 |
+
out.append("|---------|----------|------------|")
|
| 335 |
+
for ctx_opt in [2048, 4096, 8192, 16384, 32768]:
|
| 336 |
+
if ctx_opt <= max_position:
|
| 337 |
+
kv_opt = bytes_to_gb(2 * layers * batch * ctx_opt * kv_heads * head_dim * dtype_bytes)
|
| 338 |
+
total_opt = weights_gb + kv_opt
|
| 339 |
+
out.append("| " + str(ctx_opt) + " | " + str(round(kv_opt, 1)) + "GB | " + str(round(total_opt, 1)) + "GB |")
|
| 340 |
|
| 341 |
return "\n".join(out)
|
| 342 |
except Exception as e:
|
|
|
|
| 393 |
return "Error: " + str(e)
|
| 394 |
|
| 395 |
|
| 396 |
+
def generate_report(model_id, context, batch, mode, framework, num_gpus, lora_rank):
|
| 397 |
+
"""Generate a shareable text report"""
|
| 398 |
+
try:
|
| 399 |
+
if not model_id or not model_id.strip():
|
| 400 |
+
return "Enter a model ID first"
|
| 401 |
+
|
| 402 |
+
result = calculate(model_id, context, batch, mode, framework, num_gpus, lora_rank)
|
| 403 |
+
|
| 404 |
+
report = []
|
| 405 |
+
report.append("=" * 50)
|
| 406 |
+
report.append("VRAM CALCULATOR REPORT")
|
| 407 |
+
report.append("=" * 50)
|
| 408 |
+
report.append("")
|
| 409 |
+
report.append("Settings:")
|
| 410 |
+
report.append(" Model: " + model_id)
|
| 411 |
+
report.append(" Mode: " + mode)
|
| 412 |
+
report.append(" Context: " + str(context))
|
| 413 |
+
report.append(" Batch Size: " + str(batch))
|
| 414 |
+
report.append(" Framework: " + framework)
|
| 415 |
+
report.append(" GPUs: " + str(num_gpus))
|
| 416 |
+
if "LoRA" in mode:
|
| 417 |
+
report.append(" LoRA Rank: " + str(lora_rank))
|
| 418 |
+
report.append("")
|
| 419 |
+
report.append("-" * 50)
|
| 420 |
+
report.append("")
|
| 421 |
+
report.append(result)
|
| 422 |
+
report.append("")
|
| 423 |
+
report.append("-" * 50)
|
| 424 |
+
report.append("Generated by VRAM Calculator")
|
| 425 |
+
report.append("https://huggingface.co/spaces/Livengood/Instance-VRAM-Calculator")
|
| 426 |
+
|
| 427 |
+
return "\n".join(report)
|
| 428 |
+
except Exception as e:
|
| 429 |
+
return "Error generating report: " + str(e)
|
| 430 |
+
|
| 431 |
+
|
| 432 |
# Build the interface
|
| 433 |
with gr.Blocks(title="VRAM Calculator", theme=gr.themes.Soft()) as demo:
|
| 434 |
gr.Markdown("# VRAM Calculator for LLMs")
|
| 435 |
+
gr.Markdown("Estimate VRAM requirements and throughput for HuggingFace models")
|
| 436 |
|
| 437 |
with gr.Tabs():
|
| 438 |
with gr.TabItem("Calculator"):
|
|
|
|
| 489 |
info="Higher = more parameters"
|
| 490 |
)
|
| 491 |
|
| 492 |
+
with gr.Row():
|
| 493 |
+
calc_btn = gr.Button("Calculate VRAM", variant="primary")
|
| 494 |
+
export_btn = gr.Button("Export Report", variant="secondary")
|
| 495 |
+
|
| 496 |
output = gr.Markdown()
|
| 497 |
+
export_output = gr.Textbox(label="Exportable Report", lines=10, visible=False)
|
| 498 |
|
| 499 |
calc_btn.click(
|
| 500 |
fn=calculate,
|
|
|
|
| 502 |
outputs=output
|
| 503 |
)
|
| 504 |
|
| 505 |
+
def show_export(model_id, context, batch, mode, framework, num_gpus, lora_rank):
|
| 506 |
+
report = generate_report(model_id, context, batch, mode, framework, num_gpus, lora_rank)
|
| 507 |
+
return gr.update(visible=True, value=report)
|
| 508 |
+
|
| 509 |
+
export_btn.click(
|
| 510 |
+
fn=show_export,
|
| 511 |
+
inputs=[model_in, ctx_in, batch_in, mode_in, framework_in, gpus_in, lora_in],
|
| 512 |
+
outputs=export_output
|
| 513 |
+
)
|
| 514 |
+
|
| 515 |
gr.Markdown("### Popular Models")
|
| 516 |
gr.Examples(
|
| 517 |
examples=[
|
|
|
|
| 527 |
["google/gemma-2-27b"],
|
| 528 |
["microsoft/phi-3-mini-4k-instruct"],
|
| 529 |
["deepseek-ai/DeepSeek-V2-Lite"],
|
| 530 |
+
["NousResearch/Hermes-3-Llama-3.1-8B"],
|
| 531 |
+
["01-ai/Yi-1.5-34B"],
|
| 532 |
],
|
| 533 |
inputs=[model_in],
|
| 534 |
label="Click to load"
|
|
|
|
| 564 |
["mistralai/Mistral-7B-v0.1\nmistralai/Mixtral-8x7B-v0.1"],
|
| 565 |
["Qwen/Qwen2.5-7B\nQwen/Qwen2.5-14B\nQwen/Qwen2.5-72B"],
|
| 566 |
["google/gemma-2-2b\ngoogle/gemma-2-9b\ngoogle/gemma-2-27b"],
|
| 567 |
+
["meta-llama/Llama-3.1-8B\nmistralai/Mistral-7B-v0.1\nQwen/Qwen2.5-7B\ngoogle/gemma-2-9b"],
|
| 568 |
],
|
| 569 |
inputs=[cmp_in],
|
| 570 |
label="Click to load comparison"
|
| 571 |
)
|
| 572 |
|
| 573 |
with gr.TabItem("GPU Reference"):
|
| 574 |
+
gr.Markdown("## GPU VRAM & Bandwidth Reference")
|
| 575 |
+
gr.Markdown("Memory bandwidth significantly affects inference speed (tokens/second)")
|
| 576 |
+
|
| 577 |
gr.Markdown("### Consumer GPUs (NVIDIA GeForce)")
|
| 578 |
+
consumer_md = "| GPU | VRAM | Bandwidth | Best For |\n|-----|------|-----------|----------|\n"
|
| 579 |
+
for gpu, (vram, bw) in CONSUMER_GPUS.items():
|
| 580 |
+
if vram <= 12:
|
| 581 |
+
use = "Small models (3-7B)"
|
| 582 |
+
elif vram <= 16:
|
| 583 |
+
use = "7B models"
|
| 584 |
+
else:
|
| 585 |
+
use = "7B-13B models, fine-tuning"
|
| 586 |
+
consumer_md += "| " + gpu + " | " + str(vram) + "GB | " + str(bw) + " GB/s | " + use + " |\n"
|
| 587 |
gr.Markdown(consumer_md)
|
| 588 |
|
| 589 |
gr.Markdown("### Apple Silicon")
|
| 590 |
+
apple_md = "| Chip | Unified Memory | Bandwidth | Notes |\n|------|----------------|-----------|-------|\n"
|
| 591 |
+
for gpu, (vram, bw) in APPLE_GPUS.items():
|
| 592 |
+
apple_md += "| " + gpu + " | " + str(vram) + "GB | " + str(bw) + " GB/s | Shared CPU/GPU |\n"
|
| 593 |
gr.Markdown(apple_md)
|
| 594 |
|
| 595 |
gr.Markdown("### Cloud/Datacenter GPUs")
|
| 596 |
+
cloud_md = "| GPU | VRAM | Bandwidth | $/hr | Best For |\n|-----|------|-----------|------|----------|\n"
|
| 597 |
+
for gpu, (vram, cost, bw) in CLOUD_GPUS.items():
|
| 598 |
if vram <= 24:
|
| 599 |
use = "7B models, fine-tuning"
|
| 600 |
elif vram <= 48:
|
| 601 |
use = "13B-30B models"
|
| 602 |
else:
|
| 603 |
use = "70B+ models, training"
|
| 604 |
+
cloud_md += "| " + gpu + " | " + str(vram) + "GB | " + str(bw) + " GB/s | $" + str(round(cost, 2)) + " | " + use + " |\n"
|
| 605 |
gr.Markdown(cloud_md)
|
| 606 |
|
| 607 |
+
gr.Markdown("### Understanding Throughput")
|
| 608 |
+
gr.Markdown("""
|
| 609 |
+
**Tokens per second (tok/s)** estimates are based on memory bandwidth and model size.
|
| 610 |
+
|
| 611 |
+
- **Memory-bound inference**: Most LLM inference is limited by how fast weights can be loaded from memory
|
| 612 |
+
- **Bandwidth formula**: `tok/s ≈ (bandwidth / model_size) × batch_size × efficiency`
|
| 613 |
+
- **Batching**: Higher batch sizes improve throughput but use more VRAM for KV cache
|
| 614 |
+
- **Quantization**: 4-bit models load 4x faster but may have quality tradeoffs
|
| 615 |
+
|
| 616 |
+
*Estimates are approximate. Actual performance depends on implementation, optimizations, and workload.*
|
| 617 |
+
""")
|
| 618 |
+
|
| 619 |
+
with gr.TabItem("Tips & Guide"):
|
| 620 |
+
gr.Markdown("""
|
| 621 |
+
## Quick Guide
|
| 622 |
+
|
| 623 |
+
### Choosing the Right Mode
|
| 624 |
+
|
| 625 |
+
| Mode | Use Case | VRAM Multiplier |
|
| 626 |
+
|------|----------|-----------------|
|
| 627 |
+
| **Inference** | Running predictions | 1x weights + KV cache |
|
| 628 |
+
| **Training (Full)** | Training from scratch | 4-6x weights |
|
| 629 |
+
| **LoRA** | Fine-tuning with adapters | 1.3x weights |
|
| 630 |
+
| **QLoRA** | Memory-efficient fine-tuning | 0.5x weights + adapters |
|
| 631 |
+
|
| 632 |
+
### VRAM Rule of Thumb
|
| 633 |
+
|
| 634 |
+
- **Inference**: `params × 2 bytes` (FP16) + KV cache
|
| 635 |
+
- **Training**: `params × 18-20 bytes` (weights + gradients + optimizer + activations)
|
| 636 |
+
- **QLoRA**: `params × 0.5-0.6 bytes` (4-bit) + small adapter overhead
|
| 637 |
+
|
| 638 |
+
### Fitting Large Models
|
| 639 |
+
|
| 640 |
+
1. **Use quantization** (INT8, 4-bit) to reduce memory 2-4x
|
| 641 |
+
2. **Reduce context length** to shrink KV cache
|
| 642 |
+
3. **Use multi-GPU** for tensor parallelism
|
| 643 |
+
4. **Try QLoRA** instead of full fine-tuning
|
| 644 |
+
|
| 645 |
+
### Recommended Setups
|
| 646 |
+
|
| 647 |
+
| Model Size | Inference | QLoRA Training |
|
| 648 |
+
|------------|-----------|----------------|
|
| 649 |
+
| 7B | RTX 3090/4090 (24GB) | RTX 3090/4090 |
|
| 650 |
+
| 13B | A10G or 2x RTX 3090 | RTX 4090 (4-bit) |
|
| 651 |
+
| 30B | A100 40GB or 2x RTX 4090 | A10G (4-bit) |
|
| 652 |
+
| 70B | A100 80GB or 4x RTX 4090 | A100 40GB (4-bit) |
|
| 653 |
+
|
| 654 |
+
### Cost Optimization Tips
|
| 655 |
+
|
| 656 |
+
1. **Start small**: Test with smaller models first
|
| 657 |
+
2. **Use spot instances**: 60-90% cheaper for training
|
| 658 |
+
3. **Right-size**: Don't overpay for unused VRAM
|
| 659 |
+
4. **Consider Apple Silicon**: M2/M3/M4 Max good for local inference
|
| 660 |
+
""")
|
| 661 |
+
|
| 662 |
gr.Markdown("---")
|
| 663 |
gr.Markdown("*Estimates are approximate. Actual usage varies by implementation, batch size, and optimizations.*")
|
| 664 |
|