import numpy as np import soundfile as sf import torchaudio from speechbrain.pretrained.interfaces import foreign_class from app_utils import video_score,speech_score,text_score # import scipy.io.wavfile as wav # from paraformer import AudioReader, CttPunctuator, FSMNVad, ParaformerOffline # from gradio_client import Client import gradio as gr import os from consult_func import ( advice, visibility, visibility3, visibility4, visibility_choice, visibility_choice2, visibility_choice3, visibility_choice4, visibility_choice5, keyword, save2, ) os.environ["no_proxy"] = "localhost,127.0.0.1,::1" # client = Client("Liusuthu/TextDepression") # classifier = foreign_class( # source="pretrained_models/local-speechbrain/emotion-recognition-wav2vec2-IEMOCAP", # ".\\emotion-recognition-wav2vec2-IEMOCAP" # pymodule_file="custom_interface.py", # classname="CustomEncoderWav2vec2Classifier", # savedir="pretrained_models/local-speechbrain/emotion-recognition-wav2vec2-IEMOCAP", # ) # ASR_model = ParaformerOffline() # vad = FSMNVad() # punc = CttPunctuator() ######################################################################################### #第四题专用函数:(经过调整,第五题也可以用) def text_score4(text): text,score=text_score(text) return text,score,gr.Column(visible=True),text,score def speech_score4(audio): text,score=speech_score(audio) return text,score,gr.Column(visible=True),text,score def video_score4(video): text,score=video_score(video) return text,score,gr.Column(visible=True),text,score ######################################################################################### #第三题专用函数:(融入keyword识别) def text_score3(text): text,score=text_score(text) if keyword(text): return text,score,gr.Radio(visible=True), gr.Column(visible=False),text,score else: return text,score,gr.Radio(visible=False), gr.Column(visible=True),text,score def speech_score3(audio): text,score=speech_score(audio) if keyword(text): return text,score,gr.Radio(visible=True), gr.Column(visible=False),text,score else: return text,score,gr.Radio(visible=False), gr.Column(visible=True),text,score def video_score3(video): text,score=video_score(video) if keyword(text): return text,score,gr.Radio(visible=True), gr.Column(visible=False),text,score else: return text,score,gr.Radio(visible=False), gr.Column(visible=True),text,score ######################################################################################### def clear_info(): return ( gr.Textbox(""), gr.Textbox(""), gr.Textbox(""), ) # constants schema = "情感倾向[正向,负向]" # Define the schema for sentence-level sentiment classification with gr.Blocks() as consult: result1=gr.Number(label="第一道问答题分数",interactive=True,visible=False) text1=gr.Textbox(label="第一道问答题回答内容",interactive=True,visible=False) result2=gr.Number(label="第二道问答题分数",interactive=True,visible=False) text2=gr.Textbox(label="第二道问答题回答内容",interactive=True,visible=False) result3=gr.Number(label="第三道问答题分数",interactive=True,visible=False) text3=gr.Textbox(label="第三道问答题回答内容",interactive=True,visible=False) gr.Markdown( "欢迎来到这里,接下来我们来放松地聊聊天,你只要如实完整地回答我的问题就好了。" ) btn1 = gr.Button("开始") with gr.Column(visible=False) as questions: # 睡眠问题 title1 = gr.Markdown("# 睡眠") radio1 = gr.Radio( ["充足", "不足"], label="你最近睡眠还充足吗?", type="index", interactive=True, ) with gr.Column(visible=False) as q1_1: radio2 = gr.Radio( ["存在", "不存在"], label="你会存在嗜睡的情况吗?比如容易一直睡过整个上午甚至一直持续睡到下午?", interactive=True, ) with gr.Column(visible=False) as q1_2: radio3 = gr.Radio( ["不存在", "失眠", "早醒"], label="你是否存在失眠或早醒的情况?", interactive=True, ) adv1 = gr.Textbox(visible=False) # 饮食问题 title2 = gr.Markdown("# 饮食", visible=False) radio4 = gr.Radio( [ "食欲正常,没有体重上的明显变化", "食欲亢进,体重增加", "食欲不振,体重减轻", ], type="index", label="你最近食欲如何?有任何体重上的变化吗?", visible=False, interactive=True, ) # 情绪问题 title3 = gr.Markdown("# 情绪", visible=False) radio5 = gr.Radio( ["好", "不好"], label="你最近心情还好吗?", visible=False, interactive=True ) radio6 = gr.Radio( ["一周以内", "一周至两周", "两周以上"], label="你心情不好持续了多长时间呢?", visible=False, interactive=True, ) with gr.Column(visible=False) as q3_2: gr.Markdown( "你这段时间真的很不容易,愿意和我说说吗?说什么都可以,也许倾诉出来会好一些呢" ) radio7 = gr.Radio( ["文本", "语音", "视频"], label="请选择以哪种方式回答", type="index", interactive=True, ) with gr.Column(visible=False) as ans3_1: # 文本回答 text3_1 = gr.Textbox(interactive=True) btn3_1 = gr.Button("抱抱你") result3_11 = gr.Textbox(label="转录结果3_1",visible=False) result3_12 = gr.Textbox(label="分数结果3_1",visible=False) # 请把audio3_2换成Audio组件 with gr.Column(visible=False) as ans3_2: # 语音回答 audio3_2 = gr.Audio( label="语音录制(录制结束后,请等待语音条闪烁并出现波形后再提交)", interactive=True, sources=["microphone"] ) # 对应out_prob.squeeze(0).numpy()[0] btn3_2 = gr.Button("抱抱你") result3_21 = gr.Textbox(label="转录结果3_2") result3_22 = gr.Textbox(label="分数结果3_2",visible=False) # 请把video3_3换成Video组件 with gr.Column(visible=False) as ans3_3: # 视频回答 video3_3 = gr.Video( sources=["webcam", "upload"], interactive=True, format='mp4', width=500, label="视频录制(录制结束后,请等待画面闪烁并再次出现后再提交)", ) btn3_3 = gr.Button("继续") result3_31 = gr.Textbox(label="转录结果3_3") result3_32 = gr.Textbox(label="分数结果3_3",visible=False) # 自杀倾向问题 radio8 = gr.Radio( ["想过", "没想过"], label="你想过死吗?", visible=False, type="index", interactive=True, ) radio9 = gr.Radio( ["想过", "没想过"], label="那你想过怎么死吗?", visible=False, type="index", interactive=True, ) radio10 = gr.Radio( [ "没想过", "想过,没想过具体时间和地点", "想过具体做法,时间和地点,没实践过", "实践过", ], label="那你想过具体的做法吗?", visible=False, ) dead_hug = gr.Markdown( "很抱歉听到这些话,我们非常理解并关心你的情绪,我们明白产生自杀念头的原因是复杂的,并不是你的过错。如果你愿意的话,可以多来找我们聊聊天,我们愿意充当你的知心好友,并且承诺对你说的所有话严格保密。如果可以的话,我们还建议你积极寻求专业心理医生的帮助,和他们聊聊天,讲讲自己的感受。加油!\n", visible=False, ) # 兴趣爱好 with gr.Column(visible=False) as q4: title4 = gr.Markdown("# 兴趣爱好") gr.Markdown("你有什么兴趣爱好吗?平常都喜欢干什么事情呢?愿意和我说说吗?") radio11 = gr.Radio( ["文本", "语音", "视频"], label="请选择以哪种方式回答", type="index", interactive=True, ) with gr.Column(visible=False) as ans4_1: text4_1 = gr.Textbox(interactive=True) btn4_1 = gr.Button("继续") result4_11 = gr.Textbox(label="结果4_1",visible=False) result4_12 = gr.Textbox(label="分数结果4_1",visible=False) # 请把audio4_2换成Audio组件 with gr.Column(visible=False) as ans4_2: audio4_2 = gr.Audio( label="语音录制(录制结束后,请等待语音条闪烁并出现波形后再提交)", interactive=True, sources=["microphone"] ) # 对应out_prob.squeeze(0).numpy()[0] btn4_2 = gr.Button("继续") result4_21 = gr.Textbox(label="转录结果4_2") result4_22 = gr.Textbox(label="分数结果4_2",visible=False) # 请把video4_3换成Video组件 with gr.Column(visible=False) as ans4_3: video4_3 = gr.Video( sources=["webcam", "upload"], interactive=True, format='mp4', width=500, label="视频录制(录制结束后,请等待画面闪烁并再次出现后再提交)", ) btn4_3 = gr.Button("继续") result4_31 = gr.Textbox(label="转录结果4_3") result4_32 = gr.Textbox(label="分数结果4_3",visible=False) # 针对无价值感、无意义感、无力感 with gr.Column(visible=False) as q5: title5 = gr.Markdown("# 近期情况") gr.Markdown( "你愿意和我聊聊你最近都喜欢干些什么,或者有什么事情让你很沉浸,感到开心或者觉得很有意义吗?还有那些让你觉得自己很厉害,很有成就感的事情,比如说你做成了什么有难度的事情或者帮助了谁?什么都可以哦" ) radio12 = gr.Radio( ["文本", "语音", "视频"], label="请选择以哪种方式回答", type="index", interactive=True, ) with gr.Column(visible=False) as ans5_1: text5_1 = gr.Textbox(interactive=True) btn5_1 = gr.Button("提交") result5_11 = gr.Textbox(label="转录结果5_1",visible=False) result5_12 = gr.Textbox(label="分数结果5_1",visible=False) # 请把audio5_2换成Audio组件 with gr.Column(visible=False) as ans5_2: audio5_2 = gr.Audio( label="语音录制(录制结束后,请等待语音条闪烁并出现波形后再提交)", interactive=True, sources=["microphone"], ) # 对应out_prob.squeeze(0).numpy()[0] btn5_2 = gr.Button("提交") result5_21 = gr.Textbox(label="转录结果5_2") result5_22 = gr.Textbox(label="分数结果5_2",visible=False) # 请把video5_3换成Video组件 with gr.Column(visible=False) as ans5_3: # score = gr.Textbox(label="得分") video5_3=gr.Video(sources=["webcam", "upload"],interactive=True,format='mp4',width=500,label="视频录制(录制结束后,请等待画面闪烁并再次出现后再提交)") btn5_3 = gr.Button("提交") result5_31 = gr.Textbox(label="转录结果5_3") result5_32 = gr.Textbox(label="分数结果5_3",visible=False) with gr.Column(visible=False) as summary: gr.Markdown("#### 你完成了所有的测验,点击下方按钮生成报告吧~") summary_button=gr.Button("生成结论") with gr.Column(visible=False) as final_result: title6 = gr.Markdown("# 咨询总结与建议") final_score = gr.Number(interactive=False,label="最终得分") adv = gr.HTML(visible=False) save_button=gr.Button("保存本次测试数据",visible=False) with gr.Column(visible=False) as save: with gr.Row(): gr.HTML("