import pandas as pd import streamlit as st from transformers import * from carga_articulos import cargar_articulos from preprocesamiento_articulos import limpieza_articulos from entrenamiento_modelo import term_document_matrix, tf_idf_score from resultados_consulta import resultados_consulta, detalles_resultados import tensorflow as tf def crear_indice(): df=cargar_articulos() vocab = limpieza_articulos(df) td_matrix=term_document_matrix(df, vocab, 'ID', 'titulo') td_idf_matrix=tf_idf_score(td_matrix, df.ID.values) td_idf_matrix.to_csv('articulos_indexados.csv') def load_qa_model(): tokenizer = AutoTokenizer.from_pretrained('mrm8488/distill-bert-base-spanish-wwm-cased-finetuned-spa-squad2-es', use_fast="false") model = TFDistilBertForQuestionAnswering.from_pretrained("mrm8488/distill-bert-base-spanish-wwm-cased-finetuned-spa-squad2-es", from_pt=True) return tokenizer, model # 4. Use streamlit to create a web app def main(): #crear_indice() st.set_page_config(page_title="Buscador de noticias periodicos dominicanos", page_icon="📰") st.header('El Repartidor Dominicano') st.image('repartidor_periodicos.jpeg', width=150) df=cargar_articulos() articulos_indexados = pd.read_csv('articulos_indexados.csv') articulos_indexados = articulos_indexados.set_index('Unnamed: 0') tokenizer, qa_model = load_qa_model() query = st.text_input( "Escribe tus términos de búsqueda o haz una pregunta terminando con el caracter ?:" ) if query: if ('?' in query): st.write("Contestando a: ", query) text='Un texto es una composición de signos codificados en un sistema de escritura que forma una unidad de sentido.' inputs = tokenizer(query, text, return_tensors='tf') #outputs = qa_model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask']) outputs = qa_model(input_ids=inputs['input_ids']) loss = outputs.loss answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0]) answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0]) predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1] answer=tokenizer.decode(predict_answer_tokens) ans = answer + str(loss) st.info(ans) else: st.write("Buscando: ", query) result = resultados_consulta(df,articulos_indexados, query) if result.empty: st.info("No se encontraron artículos para la búsqueda solicitada") else: #st.write(detalles_resultados(df,result), unsafe_allow_html=True) df_results=detalles_resultados(df,result) N_cards_per_row = 1 for n_row, row in df_results.reset_index().iterrows(): i = n_row%N_cards_per_row if i==0: st.write("---") cols = st.columns(N_cards_per_row, gap="large") # draw the card with cols[n_row%N_cards_per_row]: st.caption(f"{row['feed'].strip()} - {row['seccion'].strip()} - {row['fecha'].strip()} ") st.markdown(f"**{row['titulo'].strip()}**") st.markdown(f"{row['resumen'].strip()}") st.markdown(f"{row['link']}") if __name__ == "__main__": main()