# File modified by authors of InstructPix2Pix from original (https://github.com/CompVis/stable-diffusion). # See more details in LICENSE. model: base_learning_rate: 5.0e-05 target: ldm.models.diffusion.ddpm_diffree.LatentDiffusion params: linear_start: 0.00085 linear_end: 0.0120 num_timesteps_cond: 1 log_every_t: 200 timesteps: 1000 first_stage_key: edited cond_stage_key: edit first_stage_downsample: True # image_size: 64 # image_size: 32 image_size: 16 channels: 4 cond_stage_trainable: false # Note: different from the one we trained before conditioning_key: hybrid monitor: val/loss_simple_ema scale_factor: 0.18215 use_ema: true load_ema: true scheduler_config: # 10000 warmup steps target: ldm.lr_scheduler.LambdaLinearScheduler params: warm_up_steps: [ 0 ] cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases f_start: [ 1.e-6 ] f_max: [ 1. ] f_min: [ 1. ] unet_config: target: ldm.modules.diffusionmodules.openaimodel_diffree.UNetModel params: image_size: 32 # unused in_channels: 8 # in_mask_channels: 12 out_channels: 4 model_channels: 320 attention_resolutions: [ 4, 2, 1 ] num_res_blocks: 2 channel_mult: [ 1, 2, 4, 4 ] num_heads: 8 use_spatial_transformer: True transformer_depth: 1 context_dim: 768 use_checkpoint: True legacy: False omp_config: target: ldm.modules.diffusionmodules.openaimodel_diffree.OMPModule params: image_size: 32 # unused in_channels: 8 # in_mask_channels: 12 out_channels: 4 model_channels: 320 attention_resolutions: [ 4, 2, 1 ] num_res_blocks: 2 channel_mult: [ 1, 2, 4, 4 ] num_heads: 8 use_spatial_transformer: True transformer_depth: 1 context_dim: 768 use_checkpoint: True legacy: False first_stage_config: target: ldm.models.autoencoder.AutoencoderKL params: embed_dim: 4 monitor: val/rec_loss ddconfig: double_z: true z_channels: 4 resolution: 256 in_channels: 3 out_ch: 3 ch: 128 ch_mult: - 1 - 2 - 4 - 4 num_res_blocks: 2 attn_resolutions: [] dropout: 0.0 lossconfig: target: torch.nn.Identity cond_stage_config: target: ldm.modules.encoders.modules.FrozenCLIPEmbedder data: target: main.DataModuleFromConfig params: batch_size: 128 num_workers: 1 wrap: false validation: target: edit_dataset_pam.EditDatasetMask params: path: data/clip-filtered-dataset cache_dir: data/ cache_name: data_10k split: val min_text_sim: 0.2 min_image_sim: 0.75 min_direction_sim: 0.2 max_samples_per_prompt: 1 min_resize_res: 512 max_resize_res: 512 crop_res: 512 output_as_edit: False real_input: True