import torch import gradio as gr import argparse import torch from transformers import AutoModelForCausalLM, AutoTokenizer # from transformers.generation.utils import GenerationConfig from utils import load_hyperparam, load_model from models.tokenize import Tokenizer from models.llama import * from generate import LmGeneration from huggingface_hub import hf_hub_download import os os.environ['CUDA_LAUNCH_BLOCKING'] = '1' args = None lm_generation = None def init_args(): global args parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) args = parser.parse_args() args.load_model_path = 'Linly-AI/ChatFlow-13B' #args.load_model_path = 'Linly-AI/ChatFlow-7B' # args.load_model_path = './model_file/chatllama_7b.bin' #args.config_path = './config/llama_7b.json' #args.load_model_path = './model_file/chatflow_13b.bin' args.config_path = './config/llama_13b_config.json' args.spm_model_path = './model_file/tokenizer.model' args.batch_size = 1 args.seq_length = 1024 args.world_size = 1 args.use_int8 = True args.top_p = 0 args.repetition_penalty_range = 1024 args.repetition_penalty_slope = 0 args.repetition_penalty = 1.15 args = load_hyperparam(args) # args.tokenizer = Tokenizer(model_path=args.spm_model_path) args.tokenizer = AutoTokenizer.from_pretrained("Linly-AI/Chinese-LLaMA-2-7B-hf", use_fast=False, trust_remote_code=True) args.vocab_size = args.tokenizer.sp_model.vocab_size() def init_model(): global lm_generation # torch.set_default_tensor_type(torch.HalfTensor) # model = LLaMa(args) # torch.set_default_tensor_type(torch.FloatTensor) # # args.load_model_path = hf_hub_download(repo_id=args.load_model_path, filename='chatflow_13b.bin') # args.load_model_path = hf_hub_download(repo_id=args.load_model_path, filename='chatflow_13b.bin') # model = load_model(model, args.load_model_path) # model.eval() # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # model.to(device) model = AutoModelForCausalLM.from_pretrained("Linly-AI/Chinese-LLaMA-2-7B-hf", device_map="auto", torch_dtype=torch.float16, trust_remote_code=True) print(model) print(torch.cuda.max_memory_allocated() / 1024 ** 3) lm_generation = LmGeneration(model, args.tokenizer) def chat(prompt, top_k, temperature): args.top_k = int(top_k) args.temperature = temperature response = lm_generation.generate(args, [prompt]) print('log:', response[0]) return response[0] if __name__ == '__main__': init_args() init_model() demo = gr.Interface( fn=chat, inputs=["text", gr.Slider(1, 60, value=10, step=1), gr.Slider(0.1, 2.0, value=1.0, step=0.1)], outputs="text", ) demo.launch()