import torch from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder from xora.models.transformers.transformer3d import Transformer3DModel from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier from xora.schedulers.rf import RectifiedFlowScheduler from xora.pipelines.pipeline_video_pixart_alpha import VideoPixArtAlphaPipeline from pathlib import Path from transformers import T5EncoderModel, T5Tokenizer import safetensors.torch import json import argparse from xora.utils.conditioning_method import ConditioningMethod import os import numpy as np import cv2 from PIL import Image def load_vae(vae_dir): vae_ckpt_path = vae_dir / "diffusion_pytorch_model.safetensors" vae_config_path = vae_dir / "config.json" with open(vae_config_path, 'r') as f: vae_config = json.load(f) vae = CausalVideoAutoencoder.from_config(vae_config) vae_state_dict = safetensors.torch.load_file(vae_ckpt_path) vae.load_state_dict(vae_state_dict) return vae.cuda().to(torch.bfloat16) def load_unet(unet_dir): unet_ckpt_path = unet_dir / "diffusion_pytorch_model.safetensors" unet_config_path = unet_dir / "config.json" transformer_config = Transformer3DModel.load_config(unet_config_path) transformer = Transformer3DModel.from_config(transformer_config) unet_state_dict = safetensors.torch.load_file(unet_ckpt_path) transformer.load_state_dict(unet_state_dict, strict=True) return transformer.cuda() def load_scheduler(scheduler_dir): scheduler_config_path = scheduler_dir / "scheduler_config.json" scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path) return RectifiedFlowScheduler.from_config(scheduler_config) def center_crop_and_resize(frame, target_height, target_width): h, w, _ = frame.shape aspect_ratio_target = target_width / target_height aspect_ratio_frame = w / h if aspect_ratio_frame > aspect_ratio_target: new_width = int(h * aspect_ratio_target) x_start = (w - new_width) // 2 frame_cropped = frame[:, x_start:x_start + new_width] else: new_height = int(w / aspect_ratio_target) y_start = (h - new_height) // 2 frame_cropped = frame[y_start:y_start + new_height, :] frame_resized = cv2.resize(frame_cropped, (target_width, target_height)) return frame_resized def load_video_to_tensor_with_resize(video_path, target_height=512, target_width=768): cap = cv2.VideoCapture(video_path) frames = [] while True: ret, frame = cap.read() if not ret: break frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame_resized = center_crop_and_resize(frame_rgb, target_height, target_width) frames.append(frame_resized) cap.release() video_np = np.array(frames) video_tensor = torch.tensor(video_np).permute(3, 0, 1, 2).float() video_tensor = (video_tensor / 127.5) - 1.0 return video_tensor def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768): image = Image.open(image_path).convert("RGB") image_np = np.array(image) frame_resized = center_crop_and_resize(image_np, target_height, target_width) frame_tensor = torch.tensor(frame_resized).permute(2, 0, 1).float() frame_tensor = (frame_tensor / 127.5) - 1.0 # Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width) return frame_tensor.unsqueeze(0).unsqueeze(2) def main(): parser = argparse.ArgumentParser(description='Load models from separate directories and run the pipeline.') # Directories parser.add_argument('--ckpt_dir', type=str, required=True, help='Path to the directory containing unet, vae, and scheduler subdirectories') parser.add_argument('--video_path', type=str, help='Path to the input video file (first frame used)') parser.add_argument('--image_path', type=str, help='Path to the input image file') parser.add_argument('--seed', type=int, default="171198") # Pipeline parameters parser.add_argument('--num_inference_steps', type=int, default=40, help='Number of inference steps') parser.add_argument('--num_images_per_prompt', type=int, default=1, help='Number of images per prompt') parser.add_argument('--guidance_scale', type=float, default=3, help='Guidance scale for the pipeline') parser.add_argument('--height', type=int, default=512, help='Height of the output video frames') parser.add_argument('--width', type=int, default=768, help='Width of the output video frames') parser.add_argument('--num_frames', type=int, default=121, help='Number of frames to generate in the output video') parser.add_argument('--frame_rate', type=int, default=25, help='Frame rate for the output video') # Prompts parser.add_argument('--prompt', type=str, default='A man wearing a black leather jacket and blue jeans is riding a Harley Davidson motorcycle down a paved road. The man has short brown hair and is wearing a black helmet. The motorcycle is a dark red color with a large front fairing. The road is surrounded by green grass and trees. There is a gas station on the left side of the road with a red and white sign that says "Oil" and "Diner".', help='Text prompt to guide generation') parser.add_argument('--negative_prompt', type=str, default='worst quality, inconsistent motion, blurry, jittery, distorted', help='Negative prompt for undesired features') args = parser.parse_args() # Paths for the separate mode directories ckpt_dir = Path(args.ckpt_dir) unet_dir = ckpt_dir / 'unet' vae_dir = ckpt_dir / 'vae' scheduler_dir = ckpt_dir / 'scheduler' # Load models vae = load_vae(vae_dir) unet = load_unet(unet_dir) scheduler = load_scheduler(scheduler_dir) patchifier = SymmetricPatchifier(patch_size=1) text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to( "cuda") tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer") # Use submodels for the pipeline submodel_dict = { "transformer": unet, "patchifier": patchifier, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "vae": vae, } pipeline = VideoPixArtAlphaPipeline(**submodel_dict).to("cuda") # Load media (video or image) if args.video_path: media_items = load_video_to_tensor_with_resize(args.video_path, args.height, args.width).unsqueeze(0) elif args.image_path: media_items = load_image_to_tensor_with_resize(args.image_path, args.height, args.width) else: raise ValueError("Either --video_path or --image_path must be provided.") # Prepare input for the pipeline sample = { "prompt": args.prompt, 'prompt_attention_mask': None, 'negative_prompt': args.negative_prompt, 'negative_prompt_attention_mask': None, 'media_items': media_items, } generator = torch.Generator(device="cpu").manual_seed(args.seed) # Run the pipeline images = pipeline( num_inference_steps=args.num_inference_steps, num_images_per_prompt=args.num_images_per_prompt, guidance_scale=args.guidance_scale, generator=generator, output_type="pt", callback_on_step_end=None, height=args.height, width=args.width, num_frames=args.num_frames, frame_rate=args.frame_rate, **sample, is_video=True, vae_per_channel_normalize=True, conditioning_method=ConditioningMethod.FIRST_FRAME ).images # Save output video for i in range(images.shape[0]): video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy() video_np = (video_np * 255).astype(np.uint8) fps = args.frame_rate height, width = video_np.shape[1:3] filename = lambda base, ext, dir='.': next( os.path.join(dir, f"{base}_{i}{ext}") for i in range(1000) if not os.path.exists(os.path.join(dir, f"{base}_{i}{ext}"))) out = cv2.VideoWriter(filename(f"video_output_{i}", ".mp4", "."), cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height)) for frame in video_np[..., ::-1]: out.write(frame) out.release() if __name__ == "__main__": main()