import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.cm as cm model = tf.keras.models.load_model('./EfficientNetB3') pred_model = tf.keras.models.load_model('./ConvNeXtTiny') def make_gradcam_heatmap(img_array, model, last_conv_layer_name, pred_index=None): # First, we create a model that maps the input image to the activations # of the last conv layer as well as the output predictions grad_model = keras.models.Model( model.inputs, [model.get_layer(last_conv_layer_name).output, model.output] ) # Then, we compute the gradient of the top predicted class for our input image # with respect to the activations of the last conv layer with tf.GradientTape() as tape: last_conv_layer_output, preds = grad_model(img_array) if pred_index is None: pred_index = tf.argmax(preds[0]) class_channel = preds[:, pred_index] # This is the gradient of the output neuron (top predicted or chosen) # with regard to the output feature map of the last conv layer grads = tape.gradient(class_channel, last_conv_layer_output) # This is a vector where each entry is the mean intensity of the gradient # over a specific feature map channel pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) # We multiply each channel in the feature map array # by "how important this channel is" with regard to the top predicted class # then sum all the channels to obtain the heatmap class activation last_conv_layer_output = last_conv_layer_output[0] heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis] heatmap = tf.squeeze(heatmap) # For visualization purpose, we will also normalize the heatmap between 0 & 1 heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap) return heatmap.numpy() def gradio_img_array(img): # `img` is a PIL image of size 299x299 # img = keras.utils.load_img(img_path, target_size=size) # `array` is a float32 Numpy array of shape (299, 299, 3) array = keras.utils.img_to_array(img) # We add a dimension to transform our array into a "batch" # of size (1, 299, 299, 3) array = np.expand_dims(array, axis=0) return array def gradio_display_gradcam(img_path, heatmap, cam_path="cam.jpg", alpha=0.4): # Load the original image # img = keras.utils.load_img(img_path) img = keras.utils.img_to_array(img_path) # Rescale heatmap to a range 0-255 heatmap = np.uint8(255 * heatmap) # Use jet colormap to colorize heatmap jet = cm.get_cmap("jet") # Use RGB values of the colormap jet_colors = jet(np.arange(256))[:, :3] jet_heatmap = jet_colors[heatmap] # Create an image with RGB colorized heatmap jet_heatmap = keras.utils.array_to_img(jet_heatmap) jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0])) jet_heatmap = keras.utils.img_to_array(jet_heatmap) # Superimpose the heatmap on original image superimposed_img = jet_heatmap * alpha + img superimposed_img = keras.utils.array_to_img(superimposed_img) return superimposed_img import gradio as gr def test(img_path): # Prepare image img_array = tf.keras.applications.efficientnet.preprocess_input(gradio_img_array(img_path)) heatmap = make_gradcam_heatmap(img_array, model, "block7b_project_conv") img = gradio_display_gradcam(img_path, heatmap, cam_path="cam2.jpg") preds = pred_model.predict(img_array, verbose=0)[0] preds_dict = {"0": float(preds[0]), "1": float(preds[1]), "2": float(preds[2]), "3": float(preds[3]), "4": float(preds[4])} return img, preds_dict interf = gr.Interface(fn=test, inputs="image", outputs=["image", "label"]) interf.launch()