import torch model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval() # evaluation import requests # 用於發送 HTTP 請求 from PIL import Image from torchvision import transforms # Download human-readable labels for ImageNet. response = requests.get("https://git.io/JJkYN") labels = response.text.split("\n") def predict(inp): inp = transforms.ToTensor()(inp).unsqueeze(0) # Resnet18輸入格式:(batch_size=1, C, H, W),batch_size=1表示一次可以處理單張圖片 with torch.no_grad(): # no_grad:不需要計算gradient prediction = torch.nn.functional.softmax(model(inp)[0], dim=0) confidences = {labels[i]: float(prediction[i]) for i in range(1000)} return confidences import gradio as gr gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=3), examples=["./images/lion.jpg", "./images/cheetah.jpg"]).launch(auth=("admin", "pass1234"))