from flask import Flask, render_template, request, redirect, send_file from langchain.llms import HuggingFaceHub from langchain.vectorstores import Chroma from langchain.chains import RetrievalQA import os import sys from langchain.embeddings import HuggingFaceBgeEmbeddings from langchain.embeddings import HuggingFaceEmbeddings from langchain.document_loaders import TextLoader from pypdf import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.schema.document import Document import json import re import random import spacy app = Flask(__name__) #global redact #redact = False global isServer isServer = True global baseFilePath global jsonPath if isServer: baseFilePath = "/data/" jsonPath = baseFilePath + "keyvalues/redacted.json" else: baseFilePath = "./" jsonPath = baseFilePath + "keyvalues/redacted.json" access_token = os.environ.get("ACCESS_TOKEN") lastnames = ["Smith", "Johnson", "Williams", "Jones", "Brown", "Davis", "Miller", "Wilson", "Moore", "Taylor", "Anderson", "Thomas", "Jackson", "White", "Harris", "Martin", "Thompson", "Garcia", "Martinez", "Robinson", "Clark", "Rodriguez", "Lewis", "Lee", "Walker", "Hall", "Allen", "Young", "Hernandez", "King", "Wright", "Lopez", "Hill", "Scott", "Green", "Adams", "Baker", "Gonzalez", "Nelson", "Carter", "Mitchell", "Perez", "Roberts", "Turner", "Phillips", "Campbell", "Parker", "Evans", "Edwards", "Collins", "Stewart", "Sanchez", "Morris", "Rogers", "Reed", "Cook", "Morgan", "Bell", "Murphy", "Bailey", "Rivera", "Cooper", "Richardson", "Cox", "Howard", "Ward", "Torres", "Peterson", "Gray", "Ramirez", "James", "Watson", "Brooks", "Kelly", "Sanders", "Price", "Bennett", "Wood", "Barnes", "Ross", "Henderson", "Coleman", "Jenkins", "Perry", "Powell", "Long", "Patterson", "Hughes", "Flores", "Washington", "Butler", "Simmons", "Foster", "Gonzales", "Bryant", "Alexander", "Russell", "Griffin", "Diaz", "Hayes"] def generateName(): return names[random.randint(0, len(names)-1)].title() + " " + lastnames[random.randint(0, len(lastnames)-1)] def valueInJSON(value, key): try: if data[key][value] != "": return data[key][value] except KeyError: return "" os.makedirs(baseFilePath + "documents/", exist_ok=True) os.makedirs(baseFilePath + "text/", exist_ok=True) os.makedirs(baseFilePath + "redacted/", exist_ok=True) os.makedirs(baseFilePath + "chroma_db/", exist_ok=True) os.makedirs(baseFilePath + "keyvalues/", exist_ok=True) if not os.path.exists(jsonPath): with open(jsonPath, 'w+') as file: json.dump({"names": {}, "addresses": {}, "companyNames": {}, "phoneNumbers": {}, "emails": {}}, file, indent=2) with open(jsonPath, 'r') as file: data = json.load(file) with open('names.txt', 'r') as file: names = file.read().splitlines() names = [x.lower() for x in names] #with open('addresses.txt', 'r') as file: # addresses = file.read().splitlines() def redactDocument(filepath): #TAKES A DOCUMENT AND REDACTS SENSITIVE INFO SUCH AS NAMES, ADDRESSES, PHONE NUMBERS, EMAILS, ETC. file = open(filepath, "r") filename = filepath.split("/")[-1].split(".")[0] file = file.readlines() text = "" for line in file: text += line lineOfText = NER(line) #NAMES for word in lineOfText.ents: if word.label_ == "PERSON" and " " in word.text and word.text.lower().split(' ')[0] in names: inJson = valueInJSON(word.text, "names") if inJson != "": fakeName = inJson else: fakeName = generateName() data['names'][word.text] = fakeName text = text.replace(word.text, fakeName) text = text.replace(word.text+"'s", fakeName+"'s") text = text.replace(word.text+"'", fakeName+"'") text = text.replace(word.text.split(' ')[1], fakeName.split(' ')[1]) else: pass #EMAIL #if re.search(r'\S+@\S+', line): # for i in re.findall(r'\S+@\S+', line): # if i in data['emails']: # fakeEmail = data['emails'][i] # else: # emailProviders = ["gmail.com", "yahoo.com", "outlook.com", "hotmail.com", "aol.com", "icloud.com", "protonmail.com"] # fakeEmail = os.urandom(10).hex() + emailProviders[random.randint(0, len(emailProviders)-1)] # data['emails'][i] = fakeEmail # text = text.replace(i, fakeEmail) txtFile = baseFilePath + "redacted/" + filename + ".txt" with open(txtFile, "w+") as f: f.write(text) return text global isFirst isFirst = True global history history = [("", "")] global embeddings if isServer: embeddings = HuggingFaceEmbeddings() else: model = "BAAI/bge-base-en-v1.5" encode_kwargs = { "normalize_embeddings": True } embeddings = HuggingFaceBgeEmbeddings( model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"} ) def hideOutput(): sys.stdout = open(os.devnull, 'w') sys.stderr = open(os.devnull, 'w') def showOutput(): sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ def prepareOnlineLLM(): #PREPARES CHROMA DB AND ACCESSES THE MIXTRAL LLM db = Chroma(persist_directory=baseFilePath + "chroma_db", embedding_function=embeddings) retriever = db.as_retriever() if isServer: llm = HuggingFaceHub(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", model_kwargs={"temperature": 0.1, "max_new_tokens": 750}) else: llm = HuggingFaceHub(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", model_kwargs={"temperature": 0.1, "max_new_tokens": 750},huggingfacehub_api_token=access_token) print(retriever) global qa qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True) def question(history, text): global isFirst if isFirst: prepareOnlineLLM() isFirst = False with open(jsonPath, 'r') as file: jsonValues = json.load(file) #REDACTING SENSITIVE INFO IN REQUEST for key in jsonValues: for value in jsonValues[key]: if value in text: text = text.replace(value, jsonValues[key][value]) if value.lower() in text: text = text.replace(value.lower(), jsonValues[key][value]) query = "You are a helpful assistant. Generate responses exclusively from the information contained in the documents. In the event that a user inquiry seeks information not explicitly stated in the documents, refrain from providing an answer. Exercise precision by relying solely on the information explicitly presented in the documents; avoid making inferences, assumptions, or speculations beyond what is explicitly mentioned. User Prompt: " + text result = qa({"query": query}) history.append((text, result['result'])) resultValue = result['result'] print(resultValue) #UNREDACTING THE RESULT for key in jsonValues: for value in jsonValues[key]: resultValue = resultValue.replace(jsonValues[key][value], value) return resultValue def extractText(file): #TAKING A PDF FILE AND CONVERTING IT TO A .TXT IN THE "TEXT" FOLDER reader = PdfReader(file) filename = os.path.splitext(os.path.basename(file))[0] text = "" for page in reader.pages: text += page.extract_text() + "\n" txtFile = baseFilePath + "text/" + filename + ".txt" with open(txtFile, "w+") as f: #f.write(re.sub(r'\s+', ' ', text)) f.write(text) redactDocument(txtFile) print(data) with open(jsonPath, 'w') as file: json.dump(data, file, indent=2) def newFile(files, filepaths): count = 0 for file in files: print("Processing: " + filepaths[count].split("/")[-1]) if filepaths[count].split(".")[-1] == "pdf": #EXTRACTING TEXT AND PROCESSING PDF extractText(filepaths[count]) elif filepaths[count].split(".")[-1] == "txt": #CREATING .TXT FILE BY SAVING THE UPLOADED FILE filename = filepaths[count].split("/")[-1].split(".")[0] documentPath = baseFilePath + "documents/" + filename + ".txt" with open(documentPath, "w+") as f: textToCopy = "\n".join(f.readlines()) saveFile = baseFilePath + "text/" + filename + ".txt" with open(saveFile, "w+") as f: f.write(textToCopy) redactDocument(saveFile) with open(jsonPath, 'w') as file: json.dump(data, file, indent=2) else: return "Error: File type not supported" redactedFile = filepaths[count].split("/")[-1].split(".")[0] redactedFile = baseFilePath + "redacted/" + redactedFile + ".txt" with open(redactedFile, 'r') as f: fileText = f.read() text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=0, separators=[" ", ",", "\n"] ) embeddings = HuggingFaceEmbeddings() #STORES TO CHROMA DB docs = [Document(page_content=x) for x in text_splitter.split_text(fileText)] db = Chroma.from_documents(docs, embeddings, persist_directory= baseFilePath + "chroma_db") print("Done processing: " + filepaths[count].split("/")[-1]) count = count + 1 @app.route('/', methods=['GET', 'POST']) def chat(): if request.method == 'POST': #HANDLES FILE UPLOADS global NER NER = spacy.load("en_core_web_lg") files = request.files.getlist('pdf-files[]') filenames = [] for file in files: filenames.append(file.filename) filepaths = [] documents_directory = baseFilePath + "documents/" os.makedirs(documents_directory, exist_ok=True) count = 0 for file in files: filepath = os.path.join(documents_directory, filenames[count]) #make it work for pdf and txt files if filepath.split(".")[-1] == "pdf": with open(filepath, 'wb') as f: f.write(file.read()) elif filepath.split(".")[-1] == "txt": #CREATING .TXT FILE BY SAVING THE UPLOADED FILE print("txt") filepaths.append(filepath) count = count + 1 newFile(files, filepaths) return "Success" #MAIN PAGE LOAD documents_directory = baseFilePath + "documents/" documents = os.listdir(documents_directory) return render_template('chat.html', history=[("", "")], documents=documents) @app.route('/chat', methods=['GET']) def askQuestion(): #PROCESSING USER QUESTIONS text = request.args.get('message') display = question(history, text) return display @app.route('/document', methods=['GET']) def document(): #RETURNS DOCUMENTS name = request.args.get('name') path = os.path.join("documents", name) return send_file(path) @app.route('/clear', methods=['GET', 'POST']) def clear(): #CLEARS ALL FILES documents_directory = baseFilePath + "documents/" documents = os.listdir(documents_directory) for document in documents: os.system("rm -rf " + os.path.join(documents_directory, document)) documents_directory = baseFilePath + "text/" documents = os.listdir(documents_directory) for document in documents: os.system("rm -rf " + os.path.join(documents_directory, document)) documents_directory = baseFilePath + "redacted/" documents = os.listdir(documents_directory) for document in documents: os.system("rm -rf " + os.path.join(documents_directory, document)) chroma_directory = baseFilePath + "chroma_db/" os.system("rm -rf " + chroma_directory) with open(jsonPath, 'w') as file: json.dump({"names": {}, "addresses": {}, "companyNames": {}, "phoneNumbers": {}, "emails": {}}, file, indent=2) return redirect('/') if __name__ == '__main__': app.run(debug=True)