from __future__ import annotations from typing import Iterable import gradio as gr from gradio.themes.base import Base from gradio.themes.utils import colors, fonts, sizes from llama_cpp import Llama from huggingface_hub import hf_hub_download import requests from bs4 import BeautifulSoup headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36" } hf_hub_download(repo_id="LLukas22/gpt4all-lora-quantized-ggjt", filename="ggjt-model.bin", local_dir=".") llm = Llama(model_path="./ggjt-model.bin") ins = '''### Instruction: {question} {data} ### Response: ''' theme = gr.themes.Monochrome( primary_hue="purple", secondary_hue="red", neutral_hue="neutral", radius_size=gr.themes.sizes.radius_sm, font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"], ) def search_ddg(question: str): response = requests.get("https://duckduckgo.com/html/", headers=headers, params={"q": question}) data = response.text soup = BeautifulSoup(data, "html.parser") result_texts = soup.find_all("a", class_="result__snippet") results: list[str] = [] output_string: str = "" for element in result_texts: if len(results) < 3: text_content = element.get_text() results.append(text_content) else: continue for element in results: output_string += element + '\n\n' return output_string def generate(instruction): feeding_data = search_ddg("What is KOIT-FM?") response = llm(ins.format(question=instruction, data=feeding_data), stop=['### Instruction:', '### End']) result = response['choices'][0]['text'] return result examples = [ "How do dogs bark?", "Why are apples red?", "How do I make a campfire?", "Why do cats love to chirp at something?" ] def process_example(args): for x in generate(args): pass return x css = ".generating {visibility: hidden}" class PurpleTheme(Base): def __init__( self, *, primary_hue: colors.Color | str = colors.purple, secondary_hue: colors.Color | str = colors.red, neutral_hue: colors.Color | str = colors.neutral, spacing_size: sizes.Size | str = sizes.spacing_md, radius_size: sizes.Size | str = sizes.radius_md, font: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("Inter"), "ui-sans-serif", "sans-serif", ), font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("Space Grotesk"), "ui-monospace", "monospace", ), ): super().__init__( primary_hue=primary_hue, secondary_hue=secondary_hue, neutral_hue=neutral_hue, spacing_size=spacing_size, radius_size=radius_size, font=font, font_mono=font_mono, ) super().set( button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)", button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)", button_primary_text_color="white", button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)", block_shadow="*shadow_drop_lg", button_shadow="*shadow_drop_lg", input_background_fill="zinc", input_border_color="*secondary_300", input_shadow="*shadow_drop", input_shadow_focus="*shadow_drop_lg", ) custom_theme = PurpleTheme() with gr.Blocks(theme=custom_theme, analytics_enabled=False, css=css) as demo: with gr.Column(): gr.Markdown( """ ## GPT4ALL 7b quantized 4bit (q4_0) Type in the box below and click the button to generate answers to your most pressing questions! """) with gr.Row(): with gr.Column(scale=3): instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input") with gr.Box(): gr.Markdown("**Answer**") output = gr.Markdown(elem_id="q-output") submit = gr.Button("Generate", variant="primary") gr.Examples( examples=examples, inputs=[instruction], cache_examples=False, fn=process_example, outputs=[output], ) submit.click(generate, inputs=[instruction], outputs=[output]) instruction.submit(generate, inputs=[instruction], outputs=[output]) demo.queue(concurrency_count=1).launch(debug=True)