import random import os class CognitiveEngine: def identify_improvements(self, task): issues = [] if random.random() > 0.7: issues.append("Memory optimization") if random.random() > 0.8: issues.append("Error handling enhancement") if "search" in task: issues.append("Information retrieval accuracy") return issues def generate_enhancements(self, targets): enhancements = [] for target in targets: if "memory" in target.lower(): enhancements.append("Optimized memory usage with caching") elif "error" in target.lower(): enhancements.append("Added comprehensive error handling") elif "retrieval" in target.lower(): enhancements.append("Improved search relevance algorithms") return enhancements def apply_enhancements(self, enhancements): # In a real system, this would modify the codebase # For simulation, we'll just log the changes print(f"Applying enhancements: {enhancements}") with open("log.txt", "a") as log_file: log_file.write(f"System enhancements applied: {enhancements}\n") return True def generate_code(self, task, context): return f'''# Generated code for: {task} import requests def main(): """Autonomously generated function""" print("Hello from AI-generated code!") print(f"Task context: {str(context)[:100]}...") # TODO: Implement actual functionality return "Task completed successfully" if __name__ == "__main__": main() ''' def improve_code(self, code, review): return f'''# Improved code based on review: "{review}" {code} # Added error handling based on review try: # Existing implementation pass except Exception as e: print(f"Error occurred: {{str(e)}}") # Additional error recovery logic '''