import tensorflow as tf import requests from numpy import asarray from transformers import pipeline inception_net = tf.keras.applications.MobileNetV2() # Obteniendo las labels de "https://git.io/JJkYN" response = requests.get("https://git.io/JJkYN") labels = response.text.split("\n") trans = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-large-xlsr-53-spanish") clasificador = pipeline("text-classification", model="pysentimiento/robertuito-sentiment-analysis") def classify_image(inp): inp = asarray(inp.resize((224, 224))) inp = inp.reshape((-1,) + inp.shape) inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp) prediction = inception_net.predict(inp).flatten() confidences = {labels[k]: float(prediction[k]) for k in range(1000)} return confidences def audio2text(audio): text = trans(audio)["text"] return text def text2sentiment(text): return clasificador(text)[0]["label"]