from fastapi import FastAPI from fastapi.staticfiles import StaticFiles from fastapi.responses import FileResponse from setup_database import get_in_memory_document_store, add_data from setup_modules import create_retriever, create_readers_and_pipeline, text_reader_types, table_reader_types app = FastAPI() document_index = "document" document_store = get_in_memory_document_store(document_index) filenames = ["processed_website_tables","processed_website_text","processed_schedule_tables"] document_store, data = add_data document_store, retriever = create_retriever(document_store) text_reader_type = text_reader_types['deberta-large'] table_reader_type = table_reader_types['tapas'] pipeline = create_readers_and_pipeline(retriever, text_reader_type, table_reader_type, True, True) @app.get("/infer_q") def t5(input): prediction = pipeline.run( query=input, params={"top_k": 10} ) answer_list = [a.answer for a in prediction["answers"]] return {"output": ("\n").join(answer_list)} app.mount("/", StaticFiles(directory="static", html=True), name="static") @app.get("/") def index() -> FileResponse: return FileResponse(path="/app/static/index.html", media_type="text/html")