import pysrt import gradio as gr import pandas as pd from transformers import MarianMTModel, MarianTokenizer # Fetch and parse language options from the provided URL url = "https://huggingface.co/Lenylvt/LanguageISO/resolve/main/iso.md" df = pd.read_csv(url, delimiter="|", skiprows=2, header=None).dropna(axis=1, how='all') df.columns = ['ISO 639-1', 'ISO 639-2', 'Language Name', 'Native Name'] df['ISO 639-1'] = df['ISO 639-1'].str.strip() # Prepare language options for the dropdown language_options = [(row['ISO 639-1'], f"{row['ISO 639-1']}") for index, row in df.iterrows()] def translate_text(text, source_language_code, target_language_code): # Construct model name using ISO 639-1 codes model_name = f"Helsinki-NLP/opus-mt-{source_language_code}-{target_language_code}" # Check if source and target languages are the same, which is not supported for translation if source_language_code == target_language_code: return "Translation between the same languages is not supported." # Load tokenizer and model try: tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) except Exception as e: return f"Failed to load model for {source_language_code} to {target_language_code}: {str(e)}" # Translate text translated = model.generate(**tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)) translated_text = tokenizer.decode(translated[0], skip_special_tokens=True) return translated_text def translate_srt(input_file, source_language_code, target_language_code, progress=gr.Progress()): # Load SRT file subs = pysrt.open(input_file.name) # Initialize an empty list to store translated subtitles translated_subs = [] # Translate each subtitle for idx, sub in enumerate(subs): translated_text = translate_text(sub.text, source_language_code, target_language_code) # Construct the translated subtitle with timestamp and line number translated_sub = pysrt.SubRipItem(index=idx+1, start=sub.start, end=sub.end, text=translated_text) translated_subs.append(translated_sub) progress((idx + 1) / len(subs), desc=f"Translating subtitle {idx+1}/{len(subs)}") # Save translated subtitles to a new SRT file translated_file = pysrt.SubRipFile(translated_subs) translated_srt_path = input_file.name.replace(".srt", f"_{target_language_code}.srt") translated_file.save(translated_srt_path) return translated_srt_path source_language_dropdown = gr.Dropdown(choices=language_options, label="Source Language") target_language_dropdown = gr.Dropdown(choices=language_options, label="Target Language") file_input = gr.File(label="Upload SRT File") iface = gr.Interface( fn=translate_srt, inputs=[file_input, source_language_dropdown, target_language_dropdown], outputs=gr.File(label="Translated SRT"), title="SRT Translation API", description="We use model from [Language Technology Research Group at the University of Helsinki](https://huggingface.co/Helsinki-NLP). For web use please visit [this space](https://huggingface.co/spaces/Lenylvt/SRT_Translation)" ) iface.launch()