from huggingface_hub import InferenceClient import os # huggingface token used to load closed off models token = os.environ.get("HGFTOKEN") # interference client created from mistral 7b instruction fine tuned model # credit: copied 1:1 from Hugging Face, Inc/ Omar Sanseviero (see https://huggingface.co/spaces/osanseviero/mistral-super-fast/) interference = InferenceClient( "mistralai/Mistral-7B-Instruct-v0.1" ) temperature = 0.7 max_new_tokens = 100 top_p = 0.95 repetition_penalty = 1.1 # chat function - basically the main function calling other functions and returning a response to showcase in chatbot ui def chat (prompt,history,system_prompt): # creating formatted prompt and calling for an answer from the model formatted_prompt = format_prompt(prompt, history) answer=respond(formatted_prompt,system_prompt) # updating the chat history with the new answer history.append((prompt, answer)) # returning the chat history to be displayed in the chatbot ui return "",history # function to format prompt in a way that is understandable for the text generation model # credit: copied 1:1 from Hugging Face, Inc/ Omar Sanseviero (see https://huggingface.co/spaces/osanseviero/mistral-super-fast/) def format_prompt(message, history): prompt = "" # labeling each message in the history as bot or user for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt # function to get the response # credit: minimally changed from Hugging Face, Inc/ Omar Sanseviero (see https://huggingface.co/spaces/osanseviero/mistral-super-fast/) def respond(formatted_prompt, system_prompt): global temperature, max_new_tokens, top_p, repetition_penalty # setting model temperature and temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) # creating model arguments/settings generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) # calling for model output and returning it output = interference.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=True, return_full_text=False).generated_text return output