import numpy as np import torch from .monotonic_align.core import maximum_path_c def maximum_path(neg_cent, mask): """ Cython optimized version. neg_cent: [b, t_t, t_s] mask: [b, t_t, t_s] """ device = neg_cent.device dtype = neg_cent.dtype neg_cent = neg_cent.data.cpu().numpy().astype(np.float32) path = np.zeros(neg_cent.shape, dtype=np.int32) t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32) t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32) maximum_path_c(path, neg_cent, t_t_max, t_s_max) return torch.from_numpy(path).to(device=device, dtype=dtype)