from haystack.telemetry import tutorial_running import logging from haystack.document_stores import InMemoryDocumentStore from haystack.pipelines.standard_pipelines import TextIndexingPipeline from haystack.nodes import BM25Retriever from haystack.nodes import FARMReader from haystack.pipelines import ExtractiveQAPipeline from pprint import pprint from haystack.utils import print_answers from haystack.nodes import EmbeddingRetriever import codecs from haystack.pipelines import FAQPipeline from haystack.utils import print_answers import logging from haystack.telemetry import tutorial_running from haystack.document_stores import InMemoryDocumentStore from haystack.nodes import EmbeddingRetriever import pandas as pd from haystack.pipelines import FAQPipeline from haystack.utils import print_answers tutorial_running(6) logging.basicConfig(format="%(levelname)s - %(name)s - %(message)s", level=logging.WARNING) logging.getLogger("haystack").setLevel(logging.INFO) document_store = InMemoryDocumentStore() f = codecs.open('faq.txt','r','UTF-8') line = f.readlines() lines = [] for i in range(2,33,2): line.pop(i) for i in range(33): line[i] = line[i][:-2] for i in range(0,33,2): lines.append([line[i],line[i+1]]) colu = ['question','answer'] df = pd.DataFrame(data=lines, columns=colu) retriever = EmbeddingRetriever( document_store=document_store, embedding_model="sentence-transformers/all-MiniLM-L6-v2", use_gpu=True, scale_score=False, ) df['embedding'] = retriever.embed_queries(queries=question).tolist() df = df.rename(columns={'question': 'content'}) question = list(df['question'].values) docs_to_index = df.to_dict(orient='records') document_store.write_documents(docs_to_index) def haysstack(input,retriever=retriever): pipe = FAQPipeline(retriever=retriever) prediction = pipe.run(query=input, params={"Retriever": {"top_k": 1}}) return prediction['answers'].split(',') # Run any question and change top_k to see more or less answers import gradio as gr from gradio.components import Textbox inputs = Textbox(lines=7, label="请输入你的问题") outputs = Textbox(lines=7, label="来自智能客服的回答") gr.Interface(fn=haysstack, inputs=inputs, outputs=outputs, title="电商客服", description="我是您的电商客服,您可以问任何你想知道的问题", theme=gr.themes.Default()).launch(share=True)