Spaces:
Sleeping
Sleeping
import streamlit as st | |
import sahi.utils.file | |
import sahi.utils.mmdet | |
from sahi import AutoDetectionModel | |
from PIL import Image | |
import random | |
from utils import sahi_mmdet_inference | |
from streamlit_image_comparison import image_comparison | |
MMDET_YOLOX_TINY_MODEL_URL = "https://huggingface.co/fcakyon/mmdet-yolox-tiny/resolve/main/yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth" | |
MMDET_YOLOX_TINY_MODEL_PATH = "yolox.pt" | |
MMDET_YOLOX_TINY_CONFIG_URL = "https://huggingface.co/fcakyon/mmdet-yolox-tiny/raw/main/yolox_tiny_8x8_300e_coco.py" | |
MMDET_YOLOX_TINY_CONFIG_PATH = "config.py" | |
IMAGE_TO_URL = { | |
"apple_tree.jpg": "https://user-images.githubusercontent.com/34196005/142730935-2ace3999-a47b-49bb-83e0-2bdd509f1c90.jpg", | |
"highway.jpg": "https://user-images.githubusercontent.com/34196005/142730936-1b397756-52e5-43be-a949-42ec0134d5d8.jpg", | |
"highway2.jpg": "https://user-images.githubusercontent.com/34196005/142742871-bf485f84-0355-43a3-be86-96b44e63c3a2.jpg", | |
"highway3.jpg": "https://user-images.githubusercontent.com/34196005/142742872-1fefcc4d-d7e6-4c43-bbb7-6b5982f7e4ba.jpg", | |
"highway2-yolox.jpg": "https://user-images.githubusercontent.com/34196005/143309873-c0c1f31c-c42e-4a36-834e-da0a2336bb19.jpg", | |
"highway2-sahi.jpg": "https://user-images.githubusercontent.com/34196005/143309867-42841f5a-9181-4d22-b570-65f90f2da231.jpg", | |
} | |
def download_comparison_images(): | |
sahi.utils.file.download_from_url( | |
"https://user-images.githubusercontent.com/34196005/143309873-c0c1f31c-c42e-4a36-834e-da0a2336bb19.jpg", | |
"highway2-yolox.jpg", | |
) | |
sahi.utils.file.download_from_url( | |
"https://user-images.githubusercontent.com/34196005/143309867-42841f5a-9181-4d22-b570-65f90f2da231.jpg", | |
"highway2-sahi.jpg", | |
) | |
def get_model(): | |
sahi.utils.file.download_from_url( | |
MMDET_YOLOX_TINY_MODEL_URL, | |
MMDET_YOLOX_TINY_MODEL_PATH, | |
) | |
sahi.utils.file.download_from_url( | |
MMDET_YOLOX_TINY_CONFIG_URL, | |
MMDET_YOLOX_TINY_CONFIG_PATH, | |
) | |
detection_model = AutoDetectionModel.from_pretrained( | |
model_type='mmdet', | |
model_path=MMDET_YOLOX_TINY_MODEL_PATH, | |
config_path=MMDET_YOLOX_TINY_CONFIG_PATH, | |
confidence_threshold=0.5, | |
device="cpu", | |
) | |
return detection_model | |
class SpinnerTexts: | |
def __init__(self): | |
self.ind_history_list = [] | |
self.text_list = [ | |
"Loading...", | |
] | |
def _store(self, ind): | |
if len(self.ind_history_list) == 6: | |
self.ind_history_list.pop(0) | |
self.ind_history_list.append(ind) | |
def get(self): | |
ind = 0 | |
while ind in self.ind_history_list: | |
ind = random.randint(0, len(self.text_list) - 1) | |
self._store(ind) | |
return self.text_list[ind] | |
st.set_page_config( | |
page_title="Small Object Detection with SAHI + YOLOX", | |
page_icon="π", | |
layout="centered", | |
initial_sidebar_state="auto", | |
) | |
download_comparison_images() | |
if "last_spinner_texts" not in st.session_state: | |
st.session_state["last_spinner_texts"] = SpinnerTexts() | |
if "output_1" not in st.session_state: | |
st.session_state["output_1"] = Image.open("highway2-yolox.jpg") | |
if "output_2" not in st.session_state: | |
st.session_state["output_2"] = Image.open("highway2-sahi.jpg") | |
st.markdown( | |
""" | |
<h2 style='text-align: center'> | |
Small Object Detection <br /> | |
with SAHI + YOLOX | |
</h2> | |
""", | |
unsafe_allow_html=True, | |
) | |
st.write("##") | |
with st.expander("Usage"): | |
st.markdown( | |
""" | |
<p> | |
1. Upload or select the input image πΌοΈ | |
<br /> | |
2. (Optional) Set SAHI parameters βοΈ | |
<br /> | |
3. Press to "π Perform Prediction" | |
<br /> | |
4. Enjoy sliding image comparison π₯ | |
</p> | |
""", | |
unsafe_allow_html=True, | |
) | |
st.write("##") | |
st.markdown(f"##### YOLOX Standard vs SAHI Prediction:") | |
static_component = image_comparison( | |
img1=st.session_state["output_1"], | |
img2=st.session_state["output_2"], | |
label1="YOLOX", | |
label2="SAHI+YOLOX", | |
width=700, | |
starting_position=50, | |
show_labels=True, | |
make_responsive=True, | |
in_memory=True, | |
) | |
col1, col2, col3 = st.columns([6, 1, 6]) | |
with col1: | |
st.markdown(f"##### Set input image:") | |
# set input image by upload | |
image_file = st.file_uploader( | |
"Upload an image to test:", type=["jpg", "jpeg", "png"] | |
) | |
# set input image from exapmles | |
def slider_func(option): | |
option_to_id = { | |
"apple_tree.jpg": str(1), | |
"highway.jpg": str(2), | |
"highway2.jpg": str(3), | |
"highway3.jpg": str(4), | |
} | |
return option_to_id[option] | |
slider = st.select_slider( | |
"Or select from example images:", | |
options=["apple_tree.jpg", "highway.jpg", "highway2.jpg", "highway3.jpg"], | |
format_func=slider_func, | |
value="highway2.jpg", | |
) | |
# visualize input image | |
if image_file is not None: | |
image = Image.open(image_file) | |
else: | |
image = sahi.utils.cv.read_image_as_pil(IMAGE_TO_URL[slider]) | |
st.image(image, width=300) | |
with col3: | |
st.markdown(f"##### Set SAHI parameters:") | |
slice_size = st.number_input("slice_size", min_value=256, value=512, step=256) | |
overlap_ratio = st.number_input( | |
"overlap_ratio", min_value=0.0, max_value=0.6, value=0.2, step=0.2 | |
) | |
postprocess_type = st.selectbox( | |
"postprocess_type", options=["NMS", "GREEDYNMM"], index=0 | |
) | |
postprocess_match_metric = st.selectbox( | |
"postprocess_match_metric", options=["IOU", "IOS"], index=0 | |
) | |
postprocess_match_threshold = st.number_input( | |
"postprocess_match_threshold", value=0.5, step=0.1 | |
) | |
postprocess_class_agnostic = st.checkbox("postprocess_class_agnostic", value=True) | |
col1, col2, col3 = st.columns([4, 3, 4]) | |
with col2: | |
submit = st.button("π Perform Prediction") | |
if submit: | |
# perform prediction | |
with st.spinner( | |
text="Downloading model weight.. " | |
+ st.session_state["last_spinner_texts"].get() | |
): | |
detection_model = get_model() | |
image_size = 416 | |
with st.spinner( | |
text="Performing prediction.. " + st.session_state["last_spinner_texts"].get() | |
): | |
output_1, output_2 = sahi_mmdet_inference( | |
image, | |
detection_model, | |
image_size=image_size, | |
slice_height=slice_size, | |
slice_width=slice_size, | |
overlap_height_ratio=overlap_ratio, | |
overlap_width_ratio=overlap_ratio, | |
postprocess_type=postprocess_type, | |
postprocess_match_metric=postprocess_match_metric, | |
postprocess_match_threshold=postprocess_match_threshold, | |
postprocess_class_agnostic=postprocess_class_agnostic, | |
) | |
st.session_state["output_1"] = output_1 | |
st.session_state["output_2"] = output_2 | |