import argparse import torch from llava.constants import X_TOKEN_INDEX, DEFAULT_X_TOKEN, DEFAULT_X_START_TOKEN, DEFAULT_X_END_TOKEN from llava.conversation import conv_templates, SeparatorStyle from llava.model.builder import load_pretrained_model from llava.utils import disable_torch_init from llava.mm_utils import process_images, tokenizer_X_token, get_model_name_from_path, KeywordsStoppingCriteria from PIL import Image import requests from PIL import Image from io import BytesIO from transformers import TextStreamer def load_image(image_file): if image_file.startswith('http://') or image_file.startswith('https://'): response = requests.get(image_file) image = Image.open(BytesIO(response.content)).convert('RGB') else: image = Image.open(image_file).convert('RGB') return image def main(args): # Model disable_torch_init() assert not (args.image_file and args.video_file) model_name = get_model_name_from_path(args.model_path) tokenizer, model, processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device) # print(model, tokenizer, processor) image_processor = processor['image'] video_processor = processor['video'] if 'llama-2' in model_name.lower(): conv_mode = "llava_llama_2" elif "v1" in model_name.lower(): conv_mode = "llava_v1" elif "mpt" in model_name.lower(): conv_mode = "mpt" else: conv_mode = "llava_v0" if args.conv_mode is not None and conv_mode != args.conv_mode: print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode)) else: args.conv_mode = conv_mode conv = conv_templates[args.conv_mode].copy() if "mpt" in model_name.lower(): roles = ('user', 'assistant') else: roles = conv.roles image = args.image_file video = args.video_file # print(image, video) if args.image_file: image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'] if type(image_tensor) is list: tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor] else: tensor = image_tensor.to(model.device, dtype=torch.float16) key = ['image'] # print(tensor.shape) elif args.video_file: video_tensor = video_processor(video, return_tensors='pt')['pixel_values'] if type(video_tensor) is list: tensor = [video.to(model.device, dtype=torch.float16) for video in video_tensor] else: tensor = video_tensor.to(model.device, dtype=torch.float16) key = ['video'] # print(tensor.shape) while True: try: inp = input(f"{roles[0]}: ") except EOFError: inp = "" if not inp: print("exit...") break print(f"{roles[1]}: ", end="") if image is not None: # first message inp = DEFAULT_X_TOKEN['IMAGE'] + '\n' + inp conv.append_message(conv.roles[0], inp) image = None elif video is not None: # first message inp = DEFAULT_X_TOKEN['VIDEO'] + '\n' + inp conv.append_message(conv.roles[0], inp) video = None else: # later messages conv.append_message(conv.roles[0], inp) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() if args.image_file: input_ids = tokenizer_X_token(prompt, tokenizer, X_TOKEN_INDEX['IMAGE'], return_tensors='pt').unsqueeze(0).cuda() elif args.video_file: input_ids = tokenizer_X_token(prompt, tokenizer, X_TOKEN_INDEX['VIDEO'], return_tensors='pt').unsqueeze(0).cuda() # print(input_ids.shape) stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) with torch.inference_mode(): output_ids = model.generate( input_ids, images=[tensor, key], do_sample=True, temperature=args.temperature, max_new_tokens=args.max_new_tokens, streamer=streamer, use_cache=True, stopping_criteria=[stopping_criteria]) outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() conv.messages[-1][-1] = outputs if args.debug: print("\n", {"prompt": prompt, "outputs": outputs}, "\n") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model-path", type=str, default="facebook/opt-350m") parser.add_argument("--model-base", type=str, default=None) parser.add_argument("--image-file", type=str, default=None) parser.add_argument("--video-file", type=str) parser.add_argument("--device", type=str, default="cuda") parser.add_argument("--conv-mode", type=str, default=None) parser.add_argument("--temperature", type=float, default=0.2) parser.add_argument("--max-new-tokens", type=int, default=512) parser.add_argument("--load-8bit", action="store_true") parser.add_argument("--load-4bit", action="store_true") parser.add_argument("--debug", action="store_true") parser.add_argument("--image-aspect-ratio", type=str, default='pad') args = parser.parse_args() main(args)