import soundfile as sf import torch from datetime import datetime import random import time from datetime import datetime import whisper import torch from transformers import AutoModelForCausalLM, AutoTokenizer, VitsModel import torch import numpy as np import os import argparse import gradio as gr from timeit import default_timer as timer import torch import numpy as np import pandas as pd import whisper # whisper_model = whisper.load_model("medium").to("cuda") tts_model = VitsModel.from_pretrained("facebook/mms-tts-pol") tts_model.to("cuda") print("TTS Loaded!") tokenizer_tss = AutoTokenizer.from_pretrained("facebook/mms-tts-pol") def save_to_txt(text_to_save): with open('prompt.txt', 'w', encoding='utf-8') as f: f.write(text_to_save) def read_txt(): with open('prompt.txt') as f: lines = f.readlines() return lines ##### Chat z LLAMA #### ##### Chat z LLAMA #### ##### Chat z LLAMA #### def _load_model_tokenizer(): model_id = 'tangger/Qwen-7B-Chat' tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto",trust_remote_code=True, fp16=True).eval() return model, tokenizer model, tokenizer = _load_model_tokenizer() def postprocess(self, y): if y is None: return [] for i, (message, response) in enumerate(y): y[i] = ( None if message is None else mdtex2html.convert(message), None if response is None else mdtex2html.convert(response), ) return y def _parse_text(text): lines = text.split("\n") lines = [line for line in lines if line != ""] count = 0 for i, line in enumerate(lines): if "```" in line: count += 1 items = line.split("`") if count % 2 == 1: lines[i] = f'
'
            else:
                lines[i] = f"
" else: if i > 0: if count % 2 == 1: line = line.replace("`", r"\`") line = line.replace("<", "<") line = line.replace(">", ">") line = line.replace(" ", " ") line = line.replace("*", "*") line = line.replace("_", "_") line = line.replace("-", "-") line = line.replace(".", ".") line = line.replace("!", "!") line = line.replace("(", "(") line = line.replace(")", ")") line = line.replace("$", "$") lines[i] = "
" + line text = "".join(lines) return text def predict(_query, _chatbot, _task_history): print(f"User: {_parse_text(_query)}") _chatbot.append((_parse_text(_query), "")) full_response = "" for response in model.chat_stream(tokenizer, _query, history=_task_history,system = "Jesteś assystentem AI. Odpowiadaj zawsze w języku poslkim" ): _chatbot[-1] = (_parse_text(_query), _parse_text(response)) yield _chatbot full_response = _parse_text(response) print(f"History: {_task_history}") _task_history.append((_query, full_response)) print(f"Qwen-7B-Chat: {_parse_text(full_response)}") def read_text(text): print("___Tekst do przeczytania!") inputs = tokenizer_tss(text, return_tensors="pt").to("cuda") with torch.no_grad(): output = tts_model(**inputs).waveform.squeeze().cpu().numpy() sf.write('temp_file.wav', output, tts_model.config.sampling_rate) return 'temp_file.wav' def update_audio(text): return 'temp_file.wav' def translate(audio): print("__Wysyłam nagranie do whisper!") # transcription = whisper_model.transcribe(audio, language="pl") return "Co możesz powiedzieć o ING Banku Śląskim?" # return transcription["text"] def predict(audio, _chatbot, _task_history): # Użyj funkcji translate, aby przekształcić audio w tekst _query = translate(audio) print(f"____User: {_parse_text(_query)}") _chatbot.append((_parse_text(_query), "")) full_response = "" for response in model.chat_stream(tokenizer, _query, history= _task_history, system = "Jesteś assystentem AI. Odpowiadaj zawsze w języku polskim. Odpowiadaj krótko."): _chatbot[-1] = (_parse_text(_query), _parse_text(response)) yield _chatbot full_response = _parse_text(response) print(f"____History: {_task_history}") _task_history.append((_query, full_response)) print(f"__Qwen-7B-Chat: {_parse_text(full_response)}") print("____full_response",full_response) audio_file = read_text(_parse_text(full_response)) # Generowanie audio return full_response def regenerate(_chatbot, _task_history): if not _task_history: yield _chatbot return item = _task_history.pop(-1) _chatbot.pop(-1) yield from predict(item[0], _chatbot, _task_history) with gr.Blocks() as chat_demo: chatbot = gr.Chatbot(label='Llama Voice Chatbot', elem_classes="control-height") query = gr.Textbox(lines=2, label='Input') task_history = gr.State([]) audio_output = gr.Audio('temp_file.wav', label="Generated Audio (wav)", type='filepath', autoplay=False) with gr.Row(): submit_btn = gr.Button("🚀 Wyślij tekst") with gr.Row(): audio_upload = gr.Audio(source="microphone", type="filepath", show_label=False) submit_audio_btn = gr.Button("🎙️ Wyślij audio") submit_btn.click(predict, [query, chatbot, task_history], [chatbot], show_progress=True) submit_audio_btn.click(predict, [audio_upload, chatbot, task_history], [chatbot], show_progress=True).then(update_audio, chatbot, audio_output) chat_demo.queue().launch()