# ------------------------------------------------------------------------------ # Reference: https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/modeling/criterion.py # Modified by Jitesh Jain (https://github.com/praeclarumjj3) # ------------------------------------------------------------------------------ """ OneFormer criterion. """ import logging import torch import torch.nn.functional as F from torch import nn from detectron2.utils.comm import get_world_size from detectron2.projects.point_rend.point_features import ( get_uncertain_point_coords_with_randomness, point_sample, ) from ..utils.misc import is_dist_avail_and_initialized, nested_tensor_from_tensor_list from ..utils import box_ops import torch.distributed as dist import diffdist.functional as diff_dist import numpy as np def dist_collect(x): """ collect all tensor from all GPUs args: x: shape (mini_batch, ...) returns: shape (mini_batch * num_gpu, ...) """ x = x.contiguous() out_list = [torch.zeros_like(x, device=x.device, dtype=x.dtype).contiguous() for _ in range(dist.get_world_size())] out_list = diff_dist.all_gather(out_list, x) return torch.cat(out_list, dim=0).contiguous() def dice_loss( inputs: torch.Tensor, targets: torch.Tensor, num_masks: float, ): """ Compute the DICE loss, similar to generalized IOU for masks Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). """ inputs = inputs.sigmoid() inputs = inputs.flatten(1) numerator = 2 * (inputs * targets).sum(-1) denominator = inputs.sum(-1) + targets.sum(-1) loss = 1 - (numerator + 1) / (denominator + 1) return loss.sum() / num_masks dice_loss_jit = torch.jit.script( dice_loss ) # type: torch.jit.ScriptModule def sigmoid_ce_loss( inputs: torch.Tensor, targets: torch.Tensor, num_masks: float, ): """ Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). Returns: Loss tensor """ loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") loss = loss.mean(1) return loss.sum() / num_masks sigmoid_ce_loss_jit = torch.jit.script( sigmoid_ce_loss ) # type: torch.jit.ScriptModule def calculate_uncertainty(logits): """ We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the foreground class in `classes`. Args: logits (Tensor): A tensor of shape (R, 1, ...) for class-specific or class-agnostic, where R is the total number of predicted masks in all images and C is the number of foreground classes. The values are logits. Returns: scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with the most uncertain locations having the highest uncertainty score. """ assert logits.shape[1] == 1 gt_class_logits = logits.clone() return -(torch.abs(gt_class_logits)) class SetCriterion(nn.Module): """This class computes the loss for DETR. The process happens in two steps: 1) we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched ground-truth / prediction (supervise class and box) """ def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses, num_points, oversample_ratio, importance_sample_ratio, contrast_temperature=None): """Create the criterion. Parameters: num_classes: number of object categories, omitting the special no-object category matcher: module able to compute a matching between targets and proposals weight_dict: dict containing as key the names of the losses and as values their relative weight. eos_coef: relative classification weight applied to the no-object category losses: list of all the losses to be applied. See get_loss for list of available losses. """ super().__init__() self.num_classes = num_classes self.matcher = matcher self.weight_dict = weight_dict self.eos_coef = eos_coef self.losses = losses empty_weight = torch.ones(self.num_classes + 1) empty_weight[-1] = self.eos_coef self.register_buffer("empty_weight", empty_weight) self.cross_entropy = nn.CrossEntropyLoss() # pointwise mask loss parameters self.num_points = num_points self.oversample_ratio = oversample_ratio self.importance_sample_ratio = importance_sample_ratio self.contrast_temperature = contrast_temperature if self.contrast_temperature is not None: self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / contrast_temperature)) def loss_contrastive(self, outputs, targets, indices, num_masks): assert "contrastive_logits" in outputs assert "texts" in outputs image_x = outputs["contrastive_logits"].float() batch_size = image_x.shape[0] # get label globally labels = torch.arange(batch_size, dtype=torch.long, device=image_x.device) + batch_size * dist.get_rank() text_x = outputs["texts"] # [B, C] image_x = F.normalize(image_x.flatten(1), dim=-1) text_x = F.normalize(text_x.flatten(1), dim=-1) logits_per_img = image_x @ dist_collect(text_x).t() logits_per_text = text_x @ dist_collect(image_x).t() logit_scale = torch.clamp(self.logit_scale.exp(), max=100) loss_img = self.cross_entropy(logits_per_img * logit_scale, labels) loss_text = self.cross_entropy(logits_per_text * logit_scale, labels) loss_contrastive = loss_img + loss_text losses = {"loss_contrastive": loss_contrastive} return losses def loss_labels(self, outputs, targets, indices, num_masks): """Classification loss (NLL) targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] """ assert "pred_logits" in outputs src_logits = outputs["pred_logits"].float() idx = self._get_src_permutation_idx(indices) target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]) target_classes = torch.full( src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device ) target_classes[idx] = target_classes_o ce_weight = torch.full( src_logits.shape[:2], self.eos_coef, dtype=torch.float32, device=src_logits.device ) ce_weight[idx] = torch.tensor(1.).to(target_classes.device) loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight, reduce=False, reduction="none") loss_ce = loss_ce.sum(1) / ce_weight.sum() loss_ce = loss_ce.sum() losses = {"loss_ce": loss_ce} return losses def loss_masks(self, outputs, targets, indices, num_masks): """Compute the losses related to the masks: the focal loss and the dice loss. targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w] """ assert "pred_masks" in outputs src_idx = self._get_src_permutation_idx(indices) tgt_idx = self._get_tgt_permutation_idx(indices) src_masks = outputs["pred_masks"] src_masks = src_masks[src_idx] masks = [t["masks"] for t in targets] # TODO use valid to mask invalid areas due to padding in loss target_masks, valid = nested_tensor_from_tensor_list(masks).decompose() target_masks = target_masks.to(src_masks) target_masks = target_masks[tgt_idx] # No need to upsample predictions as we are using normalized coordinates :) # N x 1 x H x W src_masks = src_masks[:, None] target_masks = target_masks[:, None] with torch.no_grad(): # sample point_coords point_coords = get_uncertain_point_coords_with_randomness( src_masks, lambda logits: calculate_uncertainty(logits), self.num_points, self.oversample_ratio, self.importance_sample_ratio, ) # get gt labels point_labels = point_sample( target_masks, point_coords, align_corners=False, ).squeeze(1) point_logits = point_sample( src_masks, point_coords, align_corners=False, ).squeeze(1) losses = { "loss_mask": sigmoid_ce_loss_jit(point_logits, point_labels, num_masks), "loss_dice": dice_loss_jit(point_logits, point_labels, num_masks), } del src_masks del target_masks return losses def _get_src_permutation_idx(self, indices): # permute predictions following indices batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) src_idx = torch.cat([src for (src, _) in indices]) return batch_idx, src_idx def _get_tgt_permutation_idx(self, indices): # permute targets following indices batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) tgt_idx = torch.cat([tgt for (_, tgt) in indices]) return batch_idx, tgt_idx def get_loss(self, loss, outputs, targets, indices, num_masks): loss_map = { 'labels': self.loss_labels, 'masks': self.loss_masks, 'contrastive': self.loss_contrastive, } assert loss in loss_map, f"do you really want to compute {loss} loss?" return loss_map[loss](outputs, targets, indices, num_masks) def forward(self, outputs, targets): """This performs the loss computation. Parameters: outputs: dict of tensors, see the output specification of the model for the format targets: list of dicts, such that len(targets) == batch_size. The expected keys in each dict depends on the losses applied, see each loss' doc """ outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"} # Retrieve the matching between the outputs of the last layer and the targets indices = self.matcher(outputs_without_aux, targets) # Compute the average number of target boxes accross all nodes, for normalization purposes num_masks = sum(len(t["labels"]) for t in targets) num_masks = torch.as_tensor( [num_masks], dtype=torch.float, device=next(iter(outputs.values())).device ) if is_dist_avail_and_initialized(): torch.distributed.all_reduce(num_masks) num_masks = torch.clamp(num_masks / get_world_size(), min=1).item() # Compute all the requested losses losses = {} for loss in self.losses: losses.update(self.get_loss(loss, outputs, targets, indices, num_masks)) # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. if "aux_outputs" in outputs: for i, aux_outputs in enumerate(outputs["aux_outputs"]): indices = self.matcher(aux_outputs, targets) for loss in self.losses: if loss == "contrastive": continue l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks) l_dict = {k + f"_{i}": v for k, v in l_dict.items()} losses.update(l_dict) return losses def __repr__(self): head = "Criterion " + self.__class__.__name__ body = [ "matcher: {}".format(self.matcher.__repr__(_repr_indent=8)), "losses: {}".format(self.losses), "weight_dict: {}".format(self.weight_dict), "num_classes: {}".format(self.num_classes), "eos_coef: {}".format(self.eos_coef), "num_points: {}".format(self.num_points), "oversample_ratio: {}".format(self.oversample_ratio), "importance_sample_ratio: {}".format(self.importance_sample_ratio), ] _repr_indent = 4 lines = [head] + [" " * _repr_indent + line for line in body] return "\n".join(lines)