File size: 18,365 Bytes
ae9fde6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
import os
import numpy as np
import pandas as pd
import subprocess
import os
import random
import re
import pandas as pd
import numpy as np
import seaborn as sb
import matplotlib.pyplot as plt
import matplotlib.colors as mplc
import subprocess


from scipy import signal

import plotly.figure_factory as ff
import plotly
import plotly.graph_objs as go
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot


# This function takes in a dataframe, changes the names
# of the column in various ways, and returns the dataframe.
# For best accuracy and generalizability, the code uses
# regular expressions (regex) to find strings for replacement.
def apply_header_changes(df):
    # remove lowercase x at beginning of name
    df.columns = df.columns.str.replace("^x","")
    # remove space at beginning of name
    df.columns = df.columns.str.replace("^ ","")
    # replace space with underscore
    df.columns = df.columns.str.replace(" ","_")
    # fix typos
    df.columns = df.columns.str.replace("AF_AF","AF")
    # change "Cell Id" into "ID"
    df.columns = df.columns.str.replace("Cell Id","ID")
    # if the ID is the index, change "Cell Id" into "ID"
    df.index.name = "ID"
    # 
    df.columns = df.columns.str.replace("","")
    return df

def apply_df_changes(df):
    # Remove "@1" after the ID in the index
    df.index = df.index.str.replace(r'@1$', '')
    return df

def compare_headers(expected, actual, name):
    missing_actual = np.setdiff1d(expected, actual)
    extra_actual = np.setdiff1d(actual, expected)
    if len(missing_actual) > 0:
        #print("WARNING: File '" + name + "' lacks the following expected header(s) after import header reformatting: \n" 
        #      + str(missing_actual))
        print("WARNING: File '" + name + "' lacks the following expected item(s): \n" + str(missing_actual))
    if len(extra_actual) > 0:
        #print("WARNING: '" + name + "' has the following unexpected header(s) after import header reformatting: \n" 
        #      + str(extra_actual))
        print("WARNING: '" + name + "' has the following unexpected item(s): \n" + str(extra_actual))
    
    return None


def add_metadata_location(row):
    fc = row['full_column'].lower()
    if 'cytoplasm' in fc and 'cell' not in fc and 'nucleus' not in fc:
        return 'cytoplasm'
    elif 'cell' in fc and 'cytoplasm' not in fc and 'nucleus' not in fc:
        return 'cell'
    elif 'nucleus' in fc and 'cell' not in fc and 'cytoplasm' not in fc:
        return 'nucleus'
    else:
        return 'unknown'

    
def get_perc(row, cell_type):
    total = row['stroma'] + row['immune'] + row['cancer']+row['endothelial']
    return round(row[cell_type]/total *100,1)



# Divide each marker (and its localisation) by the right exposure setting for each group of samples
def divide_exp_time(col, exp_col, metadata):
    exp_time = metadata.loc[metadata['full_column'] == col.name, exp_col].values[0]
    return col/exp_time


def do_background_sub(col, df, metadata):
    #print(col.name)
    location = metadata.loc[metadata['full_column'] == col.name, 'localisation'].values[0]
    #print('location = ' + location)
    channel = metadata.loc[metadata['full_column'] == col.name, 'Channel'].values[0]
    #print('channel = ' + channel)
    af_target = metadata.loc[
        (metadata['Channel']==channel) \
        & (metadata['localisation']==location) \
        & (metadata['target_lower'].str.contains(r'^af\d{3}$')),\
        'full_column'].values[0]
    return col - df.loc[:,af_target]


"""
This function plots distributions. It takes in a string title (title), a list of
dataframes from which to plot (dfs), a list of dataframe names for the legend
(names), a list of the desired colors for the plotted samples (colors),
a string for the x-axis label (x_label), ```a float binwidth for histrogram (bin_size)```,
a boolean to show the legend or not (legend),
and the names of the marker(s) to plot (input_labels). If not specified,
the function will plot all markers in one plot. input_labels can either be a 
single string, e.g., 'my_marker', or a list, e.g., ['my_marker1','my_marker2'].

The function will create a distribution plot and save it to png. It requires 
a list of items not to be considered as markers when evaluating column names
(not_markers) to be in memory. It also requires a desired output location of
the files (output_dir) to already be in memory. 
"""



def make_distr_plot_per_sample(title, location, dfs, df_names, colors, x_label, legend, xlims = None, markers = ['all'],not_intensities = None):
    ### GET LIST OF MARKERS TO PLOT ###
    # Get list of markers to plot if not specified by user, using columns in first df
    # Writing function(parameter = FILLER) makes that parameter optional when user calls function,
    # since it is given a default value!
    if markers == ["all"]:
        markers = [c for c in dfs[0].columns.values if c not in not_intensities]
    elif not isinstance(markers, list):
        markers = [markers]
    # Make input labels a set to get only unique values, then put back into list
    markers = list(set(markers))
    
    ### GET XLIMS ###
    if xlims == None:
        mins = [df.loc[:,markers].min().min() for df in dfs]
        maxes = [df.loc[:,markers].max().max() for df in dfs]
        xlims = [min(mins), max(maxes)]
    if not isinstance(xlims, list):
        print("Problem - xlmis not list. Exiting method...")
        return None
    ### CHECK DATA CAN BE PLOTTED ###
    # Check for data with only 1 unique value - this will cause error if plotted
    group_labels = []
    hist_data = []
    # Iterate through all dataframes (dfs)
    for i in range(len(dfs)):
        # Iterate through all marker labels
        for f in markers:
            # If there is only one unique value in the marker data for this dataframe,
            # you cannot plot a distribution plot. It gives you a linear algebra
            # singular value matrix error
            if dfs[i][f].nunique() != 1:
                # Add df name and marker name to labels list
                # If we have >1 df, we want to make clear
                # which legend label is associated with which df
                if len(df_names) > 1:
                    group_labels.append(df_names[i]+"_"+f)
                else:
                    group_labels.append(f)
                # add the data to the data list
                hist_data.append(dfs[i][f])
    # if no data had >1 unique values, there is nothing to plot
    if len(group_labels) < 1:
        print("No markers plotted - all were singular value. Names and markers were " + str(df_names) + ", " + str(markers))
        return None

    ### TRANSFORM COLOR ITEMS TO CORRECT TYPE ###
    if isinstance(colors[0], tuple):
        colors = ['rgb' + str(color) for color in colors]
    
    ### PLOT DATA ###
    # Create plot
    fig = ff.create_distplot(hist_data, group_labels, bin_size=0.1,
        #colors=colors, bin_size=bin_size,  show_rug=False)#show_hist=False,
        colors=colors, show_rug=False)
    # Adjust title, font, background color, legend...
    fig.update_layout(title_text=title, font=dict(size=18), 
        plot_bgcolor = 'white', showlegend = legend)#, legend_x = 3)
    # Adjust opacity
    fig.update_traces(opacity=0.6)
    # Adjust x-axis parameters
    fig.update_xaxes(title_text = x_label, showline=True, linewidth=2, linecolor='black', 
        tickfont=dict(size=18), range = xlims) # x lims was here
    # Adjust y-axis parameters
    fig.update_yaxes(title_text = "Kernel density estimate",showline=True, linewidth=1, linecolor='black',
        tickfont=dict(size=18))
    

    ### SAVE/DISPLAY PLOT ###
    # Save plot to HTML
    # plotly.io.write_html(fig, file = output_dir + "/" + title + ".html")
    # Plot in new tab
    #plot(fig)   
    # Save to png
    filename = os.path.join(location, title.replace(" ","_") + ".png")
    fig.write_image(filename)
    return None





    # this could be changed to use recursion and make it 'smarter'

def shorten_feature_names(long_names):
    name_dict = dict(zip(long_names,[n.split('_')[0] for n in long_names]))
    names_lts, long_names, iteration = shorten_feature_names_helper(name_dict, long_names, 1)
    # names_lts = names long-to-short
    # names_stl = names stl
    names_stl = {}
    for n in names_lts.items():
        names_stl[n[1]] = n[0]
    return names_lts, names_stl
    

def shorten_feature_names_helper(name_dict, long_names, iteration):
    #print("\nThis is iteration #"+str(iteration))
    #print("name_dict is: " + str(name_dict))
    #print("long_names is: " + str(long_names))
    ## If the number of unique nicknames == number of long names
    ## then the work here is done
    #print('\nCompare lengths: ' + str(len(set(name_dict.values()))) + ", " + str(len(long_names)))
    #print('set(name_dict.values()): ' + str(set(name_dict.values())))
    #print('long_names: ' + str(long_names))
    if len(set(name_dict.values())) == len(long_names): 
        #print('All done!')
        return name_dict, long_names, iteration
    
    ## otherwise, if the number of unique nicknames is not
    ## equal to the number of long names (must be shorter than),
    ## then we need to find more unique names
    iteration += 1
    nicknames_set = set()
    non_unique_nicknames = set()
    # construct set of current nicknames
    for long_name in long_names:
        #print('long_name is ' + long_name + ' and non_unique_nicknames set is ' + str(non_unique_nicknames))
        short_name = name_dict[long_name]
        if short_name in nicknames_set:
            non_unique_nicknames.add(short_name)
        else:
            nicknames_set.add(short_name)
    #print('non_unique_nicknames are: ' + str(non_unique_nicknames))
    
    # figure out all long names associated
    # with the non-unique short names
    trouble_long_names = set()
    for long_name in long_names:
        short_name = name_dict[long_name]
        if short_name in non_unique_nicknames:
            trouble_long_names.add(long_name)
    
    #print('troublesome long names are: ' + str(trouble_long_names))
    #print('name_dict: ' + str(name_dict))
    # operate on all names that are associated with
    # the non-unique short nicknames
    for long_name in trouble_long_names:
        #print('trouble long name is: ' + long_name)
        #print('old nickname is: ' + name_dict[long_name])
        name_dict[long_name] = '_'.join(long_name.split('_')[0:iteration])
        #print('new nickname is: ' + name_dict[long_name])
    shorten_feature_names_helper(name_dict, long_names, iteration)
    return name_dict, long_names, iteration


def heatmap_function2(title,
            data,
              method, metric, cmap,
              cbar_kws, xticklabels, save_loc,
              row_cluster, col_cluster, 
            annotations = {'rows':[],'cols':[]}):
    
    sb.set(font_scale= 6.0)

    # Extract row and column mappings
    row_mappings = []
    col_mappings = []
    for ann in annotations['rows']:
        row_mappings.append(ann['mapping'])
    for ann in annotations['cols']:
        col_mappings.append(ann['mapping'])
    # If empty lists, convert to None so seaborn accepts
    # as the row_colors or col_colors objects
    if len(row_mappings) == 0:
        row_mappings = None
    if len(col_mappings) == 0:
        col_mappings = None

def heatmap_function(title,
            data,
              method, metric, cmap,
              cbar_kws, xticklabels, save_loc,
              row_cluster, col_cluster, 
            annotations = {'rows':[],'cols':[]}):
    
    sb.set(font_scale= 2.0)

    # Extract row and column mappings
    row_mappings = []
    col_mappings = []
    for ann in annotations['rows']:
        row_mappings.append(ann['mapping'])
    for ann in annotations['cols']:
        col_mappings.append(ann['mapping'])
    # If empty lists, convert to None so seaborn accepts
    # as the row_colors or col_colors objects
    if len(row_mappings) == 0:
        row_mappings = None
    if len(col_mappings) == 0:
        col_mappings = None

    # Create clustermap
    g = sb.clustermap(data = data, 
                  robust = True,
                  method = method, metric = metric,
                  cmap = cmap,
                  row_cluster = row_cluster, col_cluster = col_cluster,
                  figsize = (40,30),
                  row_colors=row_mappings, col_colors=col_mappings,
                      yticklabels = False,
                     cbar_kws = cbar_kws,
                     xticklabels = xticklabels)
    
    # To rotate slightly the x labels
    plt.setp(g.ax_heatmap.xaxis.get_majorticklabels(), rotation=45) 
    
    # Add title
    g.fig.suptitle(title, fontsize = 60.0)
    
    #And now for the legends:
    # iterate through 'rows', 'cols'
    for ann_type in annotations.keys():
        # iterate through each individual annotation feature
        for ann in annotations[ann_type]:
            color_dict = ann['dict']
            handles = []
            for item in color_dict.keys():
                h = g.ax_col_dendrogram.bar(0,0, color = color_dict[item], label = item,
                                           linewidth = 0)
                handles.append(h)
            legend = plt.legend(handles = handles, loc = ann['location'], title = ann['label'],
                               bbox_to_anchor=ann['bbox_to_anchor'],
                               bbox_transform=plt.gcf().transFigure)
            ax = plt.gca().add_artist(legend)

    # Save image
    filename = os.path.join(save_loc, title.lower().replace(" ","_") + ".png")
    g.savefig(filename)
    
    return None


    
# sources - 
#https://stackoverflow.com/questions/27988846/how-to-express-classes-on-the-axis-of-a-heatmap-in-seaborn
# https://matplotlib.org/3.1.1/tutorials/intermediate/legend_guide.html


def verify_line_no(filename, lines_read):
    # Use Linux "wc -l" command to get the number of lines in the unopened file
    wc = subprocess.check_output(['wc', '-l', filename]).decode("utf-8")
    # Take that string, turn it into a list, extract the first item,
    # and make that an int - this is the number of lines in the file
    wc = int(wc.split()[0])
    if lines_read != wc:
        print("WARNING: '" + filename + "' has " + str(wc) + 
            " lines, but imported dataframe has " 
              + str(lines_read) + " (including header).")
    return None


def rgb_tuple_from_str(rgb_str):
    rgb_str = rgb_str.replace("(","").replace(")","").replace(" ","")
    rgb = list(map(float,rgb_str.split(",")))
    return tuple(rgb)

def color_dict_to_df(cd, column_name):
    df = pd.DataFrame.from_dict(cd, orient = 'index')
    df['rgb'] = df.apply(lambda row: (np.float64(row[0]), np.float64(row[1]), np.float64(row[2])), axis = 1)
    df = df.drop(columns = [0,1,2])
    df['hex'] = df.apply(lambda row: mplc.to_hex(row['rgb']), axis = 1)
    df[column_name] = df.index
    return df


# p-values that are less than or equal to 0.05
def p_add_star(row):
    m = [str('{:0.3e}'.format(m)) + "*" 
         if m <= 0.05 \
         else str('{:0.3e}'.format(m))
        for m in row ]
    return pd.Series(m)

# assigns a specific number of asterisks based on the thresholds 
def p_to_star(row):
    output  = []
    for item in row:
        if item <= 0.001:
            stars = 3
        elif item <= 0.01:
            stars = 2
        elif item <= 0.05:
            stars = 1
        else:
            stars = 0
        value = ''
        for i in range(stars):
            value += '*'
        output.append(value)
    return pd.Series(output)



def plot_gaussian_distributions(df):
    # Initialize thresholds list to store all calculated thresholds
    all_thresholds = []

    # Iterate over all columns except the first one (assuming the first one is non-numeric or an index)
    for column in df.columns:  
        # Extract the marker data
        marker_data = df[column]

        # Calculating mean and standard deviation for each marker
        m_mean, m_std = np.mean(marker_data), np.std(marker_data)

        # Generating x values for the Gaussian curve
        x_vals = np.linspace(marker_data.min(), marker_data.max(), 100)

        # Calculating Gaussian distribution curve
        gaussian_curve = (1 / (m_std * np.sqrt(2 * np.pi))) * np.exp(-(x_vals - m_mean) ** 2 / (2 * m_std ** 2))

        # Creating figure for Gaussian distribution for each marker
        fig = go.Figure()
        fig.add_trace(go.Scatter(x=x_vals, y=gaussian_curve, mode='lines', name=f'{column} Gaussian Distribution'))
        fig.update_layout(title=f'Gaussian Distribution for {column} Marker')

        # Calculating thresholds based on each marker's distribution
        seuil_1sigma = m_mean + m_std
        seuil_2sigma = m_mean + 2 * m_std
        seuil_3sigma = m_mean + 3 * m_std

        # Display the figures with thresholds
        fig.add_shape(type='line', x0=seuil_1sigma, y0=0, x1=seuil_1sigma, y1=np.max(gaussian_curve),
                      line=dict(color='red', dash='dash'), name=f'Seuil 1σ: {seuil_1sigma:.2f}')
        fig.add_shape(type='line', x0=seuil_2sigma, y0=0, x1=seuil_2sigma, y1=np.max(gaussian_curve),
                      line=dict(color='green', dash='dash'), name=f'Seuil 2σ: {seuil_2sigma:.2f}')
        fig.add_shape(type='line', x0=seuil_3sigma, y0=0, x1=seuil_3sigma, y1=np.max(gaussian_curve),
                      line=dict(color='blue', dash='dash'), name=f'Seuil 3σ: {seuil_3sigma:.2f}')

        # Add markers and values to the plot
        fig.add_trace(go.Scatter(x=[seuil_1sigma, seuil_2sigma, seuil_3sigma],
                                 y=[0, 0, 0],
                                 mode='markers+text',
                                 text=[f'{seuil_1sigma:.2f}', f'{seuil_2sigma:.2f}', f'{seuil_3sigma:.2f}'],
                                 textposition="top center",
                                 marker=dict(size=10, color=['red', 'green', 'blue']),
                                 name='Threshold Values'))

        fig.show()

        # Append thresholds for each marker to the list
        all_thresholds.append((column, seuil_1sigma, seuil_2sigma, seuil_3sigma))  # Include the column name

    # Return thresholds for all markers
    return all_thresholds