File size: 56,850 Bytes
b10249c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e56b4
b10249c
 
 
 
 
 
 
 
4202029
b10249c
 
 
 
 
51e56b4
b10249c
 
 
4202029
b10249c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4202029
b10249c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
#!/usr/bin/env python
# coding: utf-8

import warnings
import os
import plotly as plt
import seaborn as sb
import plotly.express as px
import panel as pn
import holoviews as hv
import hvplot.pandas
import pandas as pd
import numpy as np
import json
import matplotlib.pyplot as plt
from bokeh.plotting import figure
from bokeh.io import push_notebook, show
from bokeh.io.export import export_png
from bokeh.resources import INLINE
from bokeh.embed import file_html
from bokeh.io import curdoc
from bokeh.models import Span, Label
from bokeh.models import ColumnDataSource, Button
from my_modules import *

#Silence FutureWarnings & UserWarnings
warnings.filterwarnings('ignore', category= FutureWarning)
warnings.filterwarnings('ignore', category= UserWarning)


'''get_ipython().run_line_magic('store', '-r base_dir')
get_ipython().run_line_magic('store', '-r set_path')
get_ipython().run_line_magic('store', '-r ls_samples')
get_ipython().run_line_magic('store', '-r selected_metadata_files')'''


'''# Retrieve the variables from the JSON file
with open('stored_variables.json', 'r') as file:
    stored_vars = json.load(file)
    
base_dir = stored_vars['base_dir']
set_path = stored_vars['set_path']
selected_metadata_files = stored_vars['selected_metadata_files']
ls_samples =  stored_vars['ls_samples']
print(f"Base Directory: {base_dir}")
print(f"Set Path: {set_path}")
print(f"Selected_metadata_files: {selected_metadata_files}")


print(base_dir)
print(set_path)
print(ls_samples)
print(selected_metadata_files)'''


    
base_dir = 'wetransfer_data-zip_2024-05-17_1431'
set_path = 'test'
selected_metadata_files = "['Slide_B_DD1s1.one_1.tif.csv', 'Slide_B_DD1s1.one_2.tif.csv']"
ls_samples = "['Ashlar_Exposure_Time.csv', 'new_data.csv', 'DD3S1.csv', 'DD3S2.csv', 'DD3S3.csv', 'TMA.csv']"

pn.extension()

update_button = pn.widgets.Button(name='CSV Files', button_type='primary')
def update_samples(event):
    with open('stored_variables.json', 'r') as file:
        stored_vars = json.load(file)
        ls_samples = stored_vars['ls_samples']
    print(ls_samples)
update_button.on_click(update_samples)

csv_files_button = pn.widgets.Button(icon="clipboard", button_type="primary")
indicator = pn.indicators.LoadingSpinner(value=False, size=25)

def handle_click(clicks):
    with open('stored_variables.json', 'r') as file:
        stored_vars = json.load(file)
        ls_samples = stored_vars['ls_samples']
    return f'CSV Files Selected: {ls_samples}'

pn.Row(
    csv_files_button,
    pn.bind(handle_click, csv_files_button.param.clicks),
)


# ## I.2. *DIRECTORIES

set_path = 'test'

# Set base directory

directorio_actual = os.getcwd()
print(directorio_actual)

##### MAC WORKSTATION #####
#base_dir = r'/Volumes/LaboLabrie/Projets/OC_TMA_Pejovic/Temp/Zoe/CyCIF_pipeline/'
###########################

##### WINDOWS WORKSTATION #####
#base_dir = r'C:\Users\LaboLabrie\gerz2701\cyCIF-pipeline\Set_B'
###############################
input_path = base_dir

##### LOCAL WORKSTATION #####
#base_dir = r'/Users/harshithakolipaka/Downloads/wetransfer_data-zip_2024-05-17_1431/'
base_dir = input_path
print(base_dir)
#############################

#set_name = 'Set_A'
#set_name = 'test'
set_name = set_path

project_name = set_name              # Project name
step_suffix = 'qc_eda'               # Curent part (here part I)
previous_step_suffix_long = ""       # Previous part (here empty)

# Initial input data directory
input_data_dir = os.path.join(base_dir, project_name + "_data")

# QC/EDA output directories
# global output
output_data_dir = os.path.join(base_dir, project_name + "_" + step_suffix)
# images subdirectory
output_images_dir = os.path.join(output_data_dir,"images")

# Data and Metadata directories
# global data
metadata_dir = os.path.join(base_dir, project_name + "_metadata")
# images subdirectory
metadata_images_dir = os.path.join(metadata_dir,"images")

# Create directories if they don't already exist
for d in [base_dir, input_data_dir, output_data_dir, output_images_dir, metadata_dir, metadata_images_dir]:
    if not os.path.exists(d):
        print("Creation of the" , d, "directory...")
        os.makedirs(d)
    else :
        print("The", d, "directory already exists !")

os.chdir(input_data_dir)
with open('stored_variables.json', 'r') as file:
        stored_vars = json.load(file)
        ls_samples = stored_vars['ls_samples']
        selected_metadata_files = stored_vars['selected_metadata_files']

directories = []
for i in [base_dir, input_data_dir, output_data_dir, output_images_dir, metadata_dir, metadata_images_dir]:
    directories.append(i)

directories

def print_directories(directories):
    
    label_path = []
    labels = [
        "base_dir",
        "input_data_dir",
        "output_data_dir",
        "output_images_dir",
        "metadata_dir",
        "metadata_images_dir"
    ]

    for label, path in zip(labels, directories):
        label_path.append(f"{label} : {path}")
        
    return label_path

print_directories


# Verify paths
print('base_dir :', base_dir)
print('input_data_dir :', input_data_dir)
print('output_data_dir :', output_data_dir)
print('output_images_dir :', output_images_dir)
print('metadata_dir :', metadata_dir)
print('metadata_images_dir :', metadata_images_dir)


# ## I.3. FILES

# Listing all the .csv files in the metadata/data directory
# Don't forget to move the csv files into the proj_data directory
# if the data dir is empty it's not going to work 
#ls_samples = [sample for sample in os.listdir(input_data_dir) if sample.endswith(".csv")]
print("The following CSV files were detected:\n\n",[sample for sample in ls_samples], "\n\nin", input_data_dir, "directory.")


# In[26]:


import os
import pandas as pd

def combine_and_save_metadata_files(metadata_dir, selected_metadata_files):   
    if len(selected_metadata_files) == []:
        if not file:
            warnings.warn("No Ashlar file uploaded. Please upload a valid file.", UserWarning)
            return
    
    elif len(selected_metadata_files) > 1:
        combined_metadata_df = pd.DataFrame()

        for file in selected_metadata_files:
            file_path = os.path.join(metadata_dir, file)
            df = pd.read_csv(file_path)
            combined_metadata_df = pd.concat([combined_metadata_df, df], ignore_index=True)

        combined_metadata_df.to_csv(os.path.join(metadata_dir, "combined_metadata.csv"), index=False)
        print(f"Combined metadata file saved as 'combined_metadata.csv' in {metadata_dir}")

        return combined_metadata_df
    
    else:
        if selected_metadata_files:
            single_file_path = os.path.join(metadata_dir, selected_metadata_files[0])
            single_file_df = pd.read_csv(single_file_path)
            print(f"Only one file selected: {selected_metadata_files[0]}")
            return single_file_df
        else:
            print("No metadata files selected.")
            return pd.DataFrame()


# In[27]:


print(combine_and_save_metadata_files(metadata_dir, selected_metadata_files))


# In[28]:


ls_samples


# In[29]:


df = pd.read_csv(os.path.join(input_data_dir, ls_samples[0]),index_col = 0, nrows = 1)
df.head(10)


# In[30]:


# First gather information on expected headers using first file in ls_samples
# Read in the first row of the file corresponding to the first sample (index = 0) in ls_samples
df = pd.read_csv(os.path.join(input_data_dir, ls_samples[0]) , index_col = 0, nrows = 1)


# Make sure the file was imported correctly
print("df :\n", df.head(), "\n")
print("df's columns :\n", df.columns, "\n")
print("df's index :\n", df.index, "\n")
print("df's index name :\n", df.index.name)


# In[31]:


df.head()


# In[32]:


# Verify that the ID column in input file became the index
# Verify that the index name column is "ID", if not, rename it
if df.index.name != "ID":
    print("Expected the first column in input file (index_col = 0) to be 'ID'. \n"
          "This column will be used to set the index names (cell number for each sample). \n"
          "It appears that the column '" + df.index.name + "' was actually the imported as the index column.")
    #df.index.name = 'ID'
    print("A new index name (first column) will be given ('ID') to replace the current one '" + df.index.name + "'\n")

# Apply the changes to the headers as specified with apply_header_changes() function (in my_modules.py)
# Apply the changes to the dataframe rows as specified with apply_df_changes() function (in my_modules.py)
#df = apply_header_changes(df)
print(df.index)
df.index = df.index.str.replace(r'@1$', '')
df = apply_df_changes(df)

# Set variable to hold default header values
expected_headers = df.columns.values
expected_header = True 
print(expected_header)

intial_dataframe = df
# Make sure the file is now formated correctly
print("\ndf :\n", df.head(), "\n")
print("df's columns :\n", df.columns, "\n")
print("df's index :\n", df.index, "\n")
print("df's index name :\n", df.index.name)


# In[33]:


df.head()


# In[34]:


df.head()


# In[35]:


print("Used " + ls_samples[0] + " to determine the expected and corrected headers for all files.\n")
print("These headers are: \n" + ", ".join([h for h in expected_headers]))

corrected_headers = True


# In[36]:


for sample in ls_samples:
    file_path = os.path.join(input_data_dir,sample)
    print(file_path)


# In[37]:


# Import all the others files
dfs = {}
###############################
# !! This may take a while !! #
###############################
errors = []

for sample in ls_samples:
    file_path = os.path.join(input_data_dir,sample)
    
    try:
        # Read the CSV file
        df = pd.read_csv(file_path, index_col=0)
        # Check if the DataFrame is empty, if so, don't continue trying to process df and remove it
        
        if not df.empty:
            # Manipulations necessary for concatenation
            df = apply_header_changes(df)
            df = apply_df_changes(df)
            # Reorder the columns to match the expected headers list
            #df = df.reindex(columns=expected_headers)
            print(df.head(1))
            print(sample, "file is processed !\n")
            #print(df) 
    
            # Compare df's header df against what is expected
            compare_headers(expected_headers, df.columns.values, sample)
            #print(df.columns.values)
            # Add a new colunm to identify the csv file (sample) where the df comes from
            df['Sample_ID'] = sample 
   
    except pd.errors.EmptyDataError:
        errors.append(f'\nEmpty data error in {sample} file. Removing from analysis...')
        print(f'\nEmpty data error in {sample} file. Removing from analysis...')
        ls_samples.remove(sample)      
    
    # Add df to dfs 
    dfs[sample] = df
    
print(dfs)


dfs.values()

# Merge dfs into one df
df = pd.concat(dfs.values(), ignore_index=False , sort = False)
del dfs
merge = True 
merged_dataframe = df
df.head()

# Set index to Sample_ID + cell number : 
# create a new custom index for df based on the sample names and integer cell numbers, and then remove the temporary columns 'level_0' and 'index' that were introduced during the operations

# Creates a copy of the DataFrame df and resets its index without creating a new column for the old index
# This essentially removes the old index column and replaces it with a default integer index
df = df.copy().reset_index(drop=True)

#print(df)

# Initializing an empty list index to store the new index labels for the DataFrame
index = []

for sample in ls_samples:
    # Extract a chunk of data from the original df where the 'Sample_ID' column matches the current sample name
    # This chunk is stored in the df_chunk df, which is a subset of the original data for that specific sample
    df_chunk = df.loc[df['Sample_ID'] == sample,:].copy()
    old_index = df_chunk.index
    # Reset the index of the df_chunk df, removing the old index and replacing it with a default integer index
    df_chunk = df_chunk.reset_index(drop=True)
    # A new index is created for the df_chunk df. It combines the sample name with 'Cell_' and the integer index values, converting them to strings
    # This new index will have labels like 'SampleName_Cell_0', 'SampleName_Cell_1', and so on.
    sample = sample.split('.')[0]
    df_chunk = df_chunk.set_index(f'{sample}_Cell_' + df_chunk.index.astype(str))
    # The index values of df_chunk are then added to the index list
    index = index + df_chunk.index.values.tolist()

# After processing all the samples in the loop, assign the index list as the new index of the original df.
df.index =  index
# Remove the 'level_0' and 'index' columns from df
df = df.loc[:,~df.columns.isin(['level_0','index'])]
assigned_new_index = True 
df.head()


# ### I.3.2. NOT_INTENSITIES

# not_intensities is the list of the columns unrelated to the markers fluorescence intensities
# Can include items that aren't in a given header.
#not_intensitiehttp://localhost:8888/lab/tree/Downloads/wetransfer_data-zip_2024-05-17_1431/1_qc_eda.ipynb
#I.3.2.-NOT_INTENSITIESs = ['Nuc_X', 'Nuc_X_Inv', 'Nuc_Y', 'Nuc_Y_Inv', 'Nucleus_Roundness', 'Nucleus_Size', 'Cell_Size', 
#                   'ROI_index', 'Sample_ID', 'replicate_ID', 'Cell_ID','cell_type', 'cell_subtype', 'cluster','ID', 
#                  'Cytoplasm_Size', 'immune_checkpoint', 'Unique_ROI_index', 'Patient', 'Primary_chem(1)_vs_surg(0)']
# not_intensities is the list of the columns unrelated to the markers fluorescence intensities
# Can include items that aren't in a given header.
#not_intensities = ['Nuc_X', 'Nuc_X_Inv', 'Nuc_Y', 'Nuc_Y_Inv', 'Nucleus_Roundness', 'Nucleus_Size', 'Cell_Size', 
#                   'ROI_index', 'Sample_ID', 'replicate_ID', 'Cell_ID','cell_type', 'cell_subtype', 'cluster','ID', 
#                   'Cytoplasm_Size', 'immune_checkpoint', 'Unique_ROI_index', 'Patient', 'Primary_chem(1)_vs_surg(0)']

# Get all column names
all_columns = df.columns.tolist()

# Create a list to store non-intensity column names
not_intensities = []
intensity_columns = []
# Iterate over each column name
for column in all_columns:
    # Check if the column name contains 'Intensity_Average'
    if 'Intensity_Average' not in column:
        print(not_intensities)
        not_intensities.append(column)
    else:
        intensity_columns.append(column)
    
    
# Create a new DataFrame with non-intensity columns
not_intensities_df = pd.DataFrame(not_intensities)
print("Non-intensity columns:")
print(not_intensities)

print("non-intensity DataFrame:")
not_intensities
#print(len(intensity_columns))


pd.DataFrame(not_intensities)

path_not_intensities = os.path.join(metadata_dir,"not_intensities.csv")

# If this file already exists, add only not_intensities items of the list not already present in file
if os.path.exists(path_not_intensities):
    print("'not_intensities.csv' already exists.")
    print("Reconciling file and Jupyter notebook lists.")
    file_not_intensities = open(path_not_intensities, "r")
    file_ni = file_not_intensities.read().splitlines()
    # Set difference to identify items not already in file
    to_add = set(not_intensities) - set(file_ni)
    # We want not_intensities to the a complete list
    not_intensities = list(set(file_ni) | set(not_intensities))
    file_not_intensities.close()
    file_not_intensities = open(path_not_intensities, "a")
    for item in to_add:
        file_not_intensities.write(item +"\n")
    file_not_intensities.close()

else:
    # The file does not yet exist
    print("Could not find " + path_not_intensities + ". Creating now.")
    file_not_intensities = open(path_not_intensities, "w")
    for item in not_intensities:
        file_not_intensities.write(item + "\n")
    file_not_intensities.close()


# In[46]:


not_intensities_df = pd.read_csv(path_not_intensities)
not_intensities_df


# In[47]:


# Columns we want to keep: not_intensities, and any intensity column that contains 'Intensity_Average' (drop any intensity marker column that is not a mean intensity)
to_keep = not_intensities + [x for x in df.columns.values[~df.columns.isin(not_intensities)] if 'Intensity_Average' in x]

to_keep


# In[48]:


print(len(to_keep) - 1)


# In[49]:


# However, our to_keep list contains items that might not be in our df headers!
# These items are from our not_intensities list. So let's ask for only those items from to_keep that are actually found in our df
# Retains only the columns from the to_keep list that are found in the df's headers (columns). 
# This ensures that we are only keeping the columns that exist in your df, avoiding any potential issues with non-existent column names. 
# The result is a df containing only the specified columns.
df = df[[x for x in to_keep if x in df.columns.values]]

df.head()


# In[50]:


import pandas as pd

# Assuming you have a DataFrame named 'df'
# df = pd.read_csv('your_file.csv')

# Get all column names
all_columns = df.columns.tolist()

# Create an empty list to store intensity markers
intensity_marker = []

# Iterate over each column name
for column in all_columns:
    # Check if the column name contains 'Intensity_Average'
    if 'Intensity_Average' in column:
        # Split the column name by underscore
        parts = column.split('_')
        
        # Extract the word before the first underscore
        marker = parts[0]
        
        # Add the marker to the intensity_marker list
        intensity_marker.append(marker)

# Remove duplicates from the intensity_marker list
intensity_marker = list(set(intensity_marker))

print("Intensity Markers:")
print(intensity_marker)

# Create a callback function to update the intensities array
def update_intensities(event):
    global intensities
    global intensities_df
    new_intensities = []
    selected_columns = []
    for marker, cell, cytoplasm, nucleus in zip(marker_options_df['Marker'], marker_options_df['Cell'], marker_options_df['Cytoplasm'], marker_options_df['Nucleus']):
        if cell:
            new_intensities.append(f"{marker}_Cell_Intensity_Average")
            selected_columns.append(f"{marker}_Cell_Intensity_Average")
        if cytoplasm:
            new_intensities.append(f"{marker}_Cytoplasm_Intensity_Average")
            selected_columns.append(f"{marker}_Cytoplasm_Intensity_Average")
        if nucleus:
            new_intensities.append(f"{marker}_Nucleus_Intensity_Average")
            selected_columns.append(f"{marker}_Nucleus_Intensity_Average")
    intensities = new_intensities
    if selected_columns:
        intensities_df = merged_dataframe[selected_columns]
    else:
        intensities_df = pd.DataFrame()
    print("Updated intensities DataFrame:")
    print(intensities_df)


# In[54]:


tabulator_formatters = {
    'bool': {'type': 'tickCross'}
}

# Create a DataFrame with the intensity markers and default values
marker_options_df = pd.DataFrame({
    'Marker': intensity_marker,
    'Cell': [False] * len(intensity_marker),
    'Cytoplasm': [False] * len(intensity_marker),
    'Nucleus': [False] * len(intensity_marker)
})

# Create the Tabulator widget and link the callback function
tabulator = pn.widgets.Tabulator(marker_options_df, formatters=tabulator_formatters, sizing_mode='stretch_width')
tabulator.param.watch(update_intensities,'value')

# Create a Panel layout with the Tabulator widget
marker_options_layout = pn.Column(tabulator, sizing_mode="stretch_width")

import panel as pn
import pandas as pd
import random
import asyncio

# Initialize the Panel extension with Tabulator
pn.extension('tabulator')

# Create a DataFrame with the intensity markers and default values
marker_options_df = pd.DataFrame({
    'Marker': intensity_marker,
    'Cell': [True] * len(intensity_marker),
    'Cytoplasm': [False] * len(intensity_marker),
    'Nucleus': [False] * len(intensity_marker)
})

# Define formatters for the Tabulator widget
tabulator_formatters = {
    'Cell': {'type': 'tickCross'},
    'Cytoplasm': {'type': 'tickCross'},
    'Nucleus': {'type': 'tickCross'}
}

# Create the Tabulator widget
tabulator = pn.widgets.Tabulator(marker_options_df, formatters=tabulator_formatters, sizing_mode='stretch_width')

# Create a DataFrame to store the initial intensities
new_data = [{'Description': f"{marker}_Cell_Intensity_Average"} for marker in intensity_marker if True]
new_data_df = pd.DataFrame(new_data)

# Create a widget to display the new data as a DataFrame
new_data_table = pn.widgets.Tabulator(new_data_df, name='New Data Table', sizing_mode='stretch_width')

# Create a button to start the update process
run_button = pn.widgets.Button(name="Save Selection", button_type='primary')

# Define the update_intensities function
def update_intensities():
    global new_data, new_data_df
    new_data = []
    for _, row in tabulator.value.iterrows():
        marker = row['Marker']
        if row['Cell']:
            new_data.append({'Description': f"{marker}_Cell_Intensity_Average"})
        if row['Cytoplasm']:
            new_data.append({'Description': f"{marker}_Cytoplasm_Intensity_Average"})
        if row['Nucleus']:
            new_data.append({'Description': f"{marker}_Nucleus_Intensity_Average"})
    new_data_df = pd.DataFrame(new_data)
    new_data_table.value = new_data_df

# Define the runner function
async def runner(event):
    update_intensities()

# Bind the runner function to the button
run_button.on_click(runner)

# Layout
updated_intensities = pn.Column(tabulator, run_button, new_data_table, sizing_mode="stretch_width")

pn.extension()
# Serve the layout
#updated_intensities.servable()


intensities_df = new_data_table
intensities_df

intensities_df = pn.pane.DataFrame(intensities_df)
intensities_df

print(intensities_df)
# ## I.4. QC CHECKS

def quality_check_results(check_shape, check_no_null,check_zero_intensities):
    results = [
        f"Check Index: {check_index}",
        f"Check Shape: {check_shape}",
        f"Check No Null: {check_no_null}",
        f"Check Zero Intensities: {check_zero_intensities}"
    ]
    return pn.Column(*[pn.Row(result) for result in results], sizing_mode="stretch_width")

print(ls_samples)

def check_index_format(index_str, ls_samples):
    """
    Checks if the given index string follows the specified format.

    Args:
        index_str (str): The index string to be checked.
        ls_samples (list): A list of valid sample names.

    Returns:
        bool: True if the index string follows the format, False otherwise.
    """
    # Split the index string into parts
    parts = index_str.split('_')

    # Check if there are exactly 3 parts
    if len(parts) != 3:
        print(len(parts))
        return False

    # Check if the first part is in ls_samples
    sample_name = parts[0]
    if f'{sample_name}.csv' not in ls_samples:
        print(sample_name)
        return False

    # Check if the second part is in ['cell', 'cytoplasm', 'nucleus']
    location = parts[1]
    valid_locations = ['Cell', 'Cytoplasm', 'Nucleus']
    if location not in valid_locations:
        print(location)
        return False

    # Check if the third part is a number
    try:
        index = int(parts[2])
    except ValueError:
        print(index)
        return False

    # If all checks pass, return True
    return True


# In[70]:


# Let's take a look at a few features to make sure our dataframe is as expected
df.index
def check_format_ofindex(index):
    for index in df.index:
        check_index = check_index_format(index, ls_samples) 
        if check_index is False:
            index_format = "Bad"
            return index_format
        
    index_format = "Good"   
    return index_format
print(check_format_ofindex(df.index))


# In[71]:


df.shape
check_index = df.index
check_shape = df.shape
print(check_shape)


# In[72]:


# Check for NaN entries (should not be any unless columns do not align)
# False means no NaN entries 
# True means NaN entries 
df.isnull().any().any()

check_no_null = df.isnull().any().any()


# In[73]:


# Check that all expected files were imported into final dataframe
if sorted(df.Sample_ID.unique()) == sorted(ls_samples):
    print("All expected filenames are present in big df Sample_ID column.")
    check_all_expected_files_present = "All expected filenames are present in big df Sample_ID column."
else:
    compare_headers(['no samples'], df.Sample_ID.unique(), "big df Sample_ID column")
    check_all_expected_files_present = compare_headers(['no samples'], df.Sample_ID.unique(), "big df Sample_ID column")

print(df.Sample_ID)


# In[74]:


# Delete rows that have 0 value mean intensities for intensity columns
print("df.shape before removing 0 mean values: ", df.shape)

# We use the apply method on df to calculate the mean intensity for each row. It's done this by applying a lambda function to each row. 
# The lambda function excludes the columns listed in the not_intensities list (which are not to be considered for mean intensity calculations) 
# and calculates the mean of the remaining values in each row.
###############################
# !! This may take a while !! #
###############################
# Calculate mean intensity excluding 'not_intensities' columns
mean_intensity = df.loc[:, ~df.columns.isin(not_intensities)].mean(axis=1)

# Check if there are any 0 mean intensity values
if (mean_intensity == 0).any():
    df = df.loc[mean_intensity > 0, :]
    print("Shape after removing 0 mean values: ", df.shape) 
    check_zero_intensities = f'df.shape after removing 0 mean values: {df.shape}'
else:
    print("No zero intensity values.")
    check_zero_intensities = " No zero intensity values found in the DataFrame."



# Get quantiles (5th, 50th, 95th)
# List of nucleus size percentiles to extract 
#qs = [0.05,0.50,0.95] 



#df["Nucleus_Size"].quantile(q=qs)


quality_control_df = df
quality_control_df.head()

# Function to perform quality checks
def perform_quality_checks(df, ls_samples, not_intensities):
    results = {}
    errors = []
    # Check index
    results['index'] = df.index
    
    # Check shape
    results['shape'] = df.shape
    
    # Check for NaN entries
    results['nan_entries'] = df.isnull().any().any()

    # Remove rows with 0 mean intensity values
    mean_intensity = df.loc[:, ~df.columns.isin(not_intensities)].mean(axis=1)
    if (mean_intensity == 0).any():
        df = df.loc[mean_intensity > 0, :]
        results['zero_intensity_removal'] = f"Zero intensity entires are found and removed. Shape after removing: {df.shape}"
    else:
        results['zero_intensity_removal'] = "No zero intensity values found in the DataFrame."
    
    return results

# Example usage of the function
quality_check_results = perform_quality_checks(df, ls_samples, not_intensities)

# Print results
for key, value in quality_check_results.items():
    print(f"{key}: {value}")


# In[80]:


import panel as pn
import pandas as pd

def quality_check(file, not_intensities):
    # Load the output file
    df = file

    # Check Index
    check_index = check_format_ofindex(df.index)

    # Check Shape
    check_shape = df.shape

    # Check for NaN entries
    check_no_null = df.isnull().any().any()

    mean_intensity = df.loc[:, ~df.columns.isin(not_intensities)].mean(axis=1)
    if (mean_intensity == 0).any():
        df = df.loc[mean_intensity > 0, :]
        print("df.shape after removing 0 mean values: ", df.shape)
        check_zero_intensities = f'df.shape after removing 0 mean values: {df.shape}'
    else:
        print("No zero intensity values found in the DataFrame.")
        check_zero_intensities = "No zero intensities."

    # Create a quality check results table
    quality_check_results_table = pd.DataFrame({
        'Check': ['Index', 'Shape', 'Check for NaN Entries', 'Check for Zero Intensities'],
        'Result': [str(check_index), str(check_shape), str(check_no_null), check_zero_intensities]
    })

    # Create a quality check results component
    quality_check_results_component = pn.Card(
        pn.pane.DataFrame(quality_check_results_table),
        title="Quality Control Results",
        header_background="#2196f3",
        header_color="white",
    )

    return quality_check_results_component

quantile_slider = pn.widgets.FloatSlider(name='Quantile', start=0.01, end=0.99, step=0.01, value=0.05)


# Function to calculate quantile values
def calculate_quantiles(quantile):
    quantile_value_intensity = df["AF555_Cell_Intensity_Average"].quantile(q=[quantile, 0.50, 1 - quantile])    
    return quantile_value_intensity

# Function to create the Panel app
def create_app(quantile = quantile_slider.param.value):
    quantiles = calculate_quantiles(quantile)
    output = pd.DataFrame(quantiles)
    
    # Create a Markdown widget to display the output
    output_widget = pn.pane.DataFrame(output)

    return output_widget


# Bind the create_app function to the quantile slider
quantile_output_app = pn.bind(create_app, quantile_slider.param.value)
#pn.Column(quantile_slider,quantile_output_app).servable()

# Function to create the line graph plot using Bokeh
def create_line_graph2(quantile):
    # Calculate histogram
    hist, edges = np.histogram(df['Nucleus_Size'], bins=30)
    
    # Calculate the midpoints of bins for plotting
    midpoints = (edges[:-1] + edges[1:]) / 2

    # Calculate quantiles
    qs = [quantile, 0.50, 1.00 - quantile]
    quantiles = df['Nucleus_Size'].quantile(q=qs).values

    # Create Bokeh line graph plot
    p = figure(title='Frequency vs. Nucleus_Size', 
               x_axis_label='Nucleus_Size', 
               y_axis_label='Frequency',
               width=800, height=400)
    
    # Plotting histogram
    p.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:],
           fill_color='skyblue', line_color='black', alpha=0.6)
    
    # Plotting line graph
    p.line(midpoints, hist, line_width=2, color='blue', alpha=0.7)
    
    # Add quantile lines
    for q in quantiles:
        span = Span(location=q, dimension='height', line_color='red', line_dash='dashed', line_width=2)
        p.add_layout(span)
        p.add_layout(Label(x=q, y=max(hist), text=f'{q:.1f}', text_color='red'))
    
    return p

# Bind the create_line_graph function to the quantile slider
nucleus_size_line_graph_with_histogram = pn.bind(create_line_graph2, quantile=quantile_slider.param.value)

# Layout the components in a Panel app
#nucleus_size_line_graph_with_histogram = pn.Column(create_line_graph2(quantile = quantile_slider.param.value))
#nucleus_size_line_graph_with_histogram.servable()
# Layout the components in a Panel app
plot1 = pn.Column(quantile_slider, pn.pane.Bokeh(nucleus_size_line_graph_with_histogram))
#plot1.servable()

#Removing cells based on nucleus size

quantile = quantile_slider.value
qs = [quantile, 0.50, 1.00 - quantile]
quantiles = df['Nucleus_Size'].quantile(q=qs).values
threshold = quantiles[2]


# In[89]:


print(threshold)


# In[90]:



import panel as pn
import pandas as pd
import numpy as np
from bokeh.plotting import figure
from bokeh.models import Span, Label
# Define the quantile slider
#quantile_slider = pn.widgets.FloatSlider(name='Quantile', start=0.01, end=0.99, step=0.01, value=0.05)

# Function to update the threshold and display number of cells removed
def update_threshold_and_display(quantile):
    qs = [quantile, 0.50, 1.00 - quantile]
    quantiles = df['Nucleus_Size'].quantile(q=qs).values
    threshold = quantiles[2]
    
    # Filter the DataFrame based on the new threshold
    df_filtered = df.loc[(df['Nucleus_Size'] > 42) & (df['Nucleus_Size'] < threshold)]
    
    # Calculate the number of cells removed
    cells_before_filter = df.shape[0]
    cells_after_filter = df_filtered.shape[0]
    cells_removed = cells_before_filter - cells_after_filter
    
    # Display the results
    results = pn.Column(
        f"Number of cells before filtering: {cells_before_filter}",
        f"Number of cells after filtering on nucleus size: {cells_after_filter}",
        f"Number of cells removed: {cells_removed}"
    )
    
    return results

# Bind the update function to the quantile slider
results_display = pn.bind(update_threshold_and_display, quantile_slider)

# Layout the components in a Panel app
layout2 = results_display


# In[91]:


print("Number of cells before filtering :", df.shape[0])
cells_before_filter = f"Number of cells before filtering :{df.shape[0]}"
# Delete small cells and objects w/high AF555 Signal (RBCs) 
# We usually use the 95th percentile calculated during QC_EDA
df = df.loc[(df['Nucleus_Size'] > 42 )]
df = df.loc[(df['Nucleus_Size'] < threshold)]
cells_after_filter_nucleus_shape = df.shape[0]
print("Number of cells after filtering on nucleus size:", df.shape[0])

df = df.loc[(df['AF555_Cell_Intensity_Average'] < 2000)]
print("Number of cells after filtering on AF555A ___ intensity:", df.shape[0])
cells_after_filter_intensity_shape = df.shape[0]
cells_after_filter_nucleus = f"Number of cells after filtering on nucleus size: {cells_after_filter_nucleus_shape}"
cells_after_filter_intensity = f"Number of cells after filtering on AF555A ___ intensity: {cells_after_filter_intensity_shape}"

num_of_cell_removal_intensity = cells_after_filter_intensity

print(num_of_cell_removal_intensity )

num_of_cell_removal = pn.Column(cells_before_filter, cells_after_filter_nucleus)


# Assuming you have a DataFrame 'df' with the intensity columns
intensities = df.filter(like='Intensity').columns.tolist()

# Create a ColumnDataSource from the DataFrame
source = ColumnDataSource(df)

# Function to calculate quantile values
def calculate_quantiles(column, quantile):
    quantiles = df[column].quantile(q=[quantile, 0.50, 1 - quantile]).values
    return quantiles

# Create the dropdown menu
column_dropdown = pn.widgets.Select(name='Select Column', options=intensities)

quantile_slider = pn.widgets.FloatSlider(name='Quantile', start=0.01, end=0.99, step=0.01, value=0.05)


# Function to create the Bokeh plot
def create_intensity_plot(column, quantile):
    quantiles = calculate_quantiles(column, quantile)
    hist, edges = np.histogram(df[column], bins = 30)
    # Calculate the midpoints of bins for plotting
    midpoints = (edges[:-1] + edges[1:]) / 2
    
    # Create Bokeh plot
    p = figure(title=f'Distribution of {column} with Quantiles', 
               x_axis_label=f'{column} Values', 
               y_axis_label='Frequency',
               width=800, height=400)
    
    
    p.quad(top=hist, bottom=0, left=edges[:-1], right= edges[1:], 
           fill_color='skyblue', line_color='black', alpha=0.7)

    # Plotting line graph
    p.line(midpoints, hist, line_width=2, color='blue', alpha=0.7)
    
    # Add quantile lines
    for q in quantiles:
        span = Span(location=q, dimension='height', line_color='red', line_dash='dashed', line_width=2)
        p.add_layout(span)
        p.add_layout(Label(x=q, y=max(hist), text=f'{q:.1f}', text_color='red'))
    
    return p


# Bind the create_plot function to the quantile slider, column dropdown, and button click
marker_intensity_with_histogram = pn.bind(create_intensity_plot,column_dropdown.param.value, quantile_slider.param.value, watch=True)

# Create the button
generate_plot_button = Button(label='Generate Plot', button_type='primary')

def update_plot(column, quantile):
    plot = create_intensity_plot(column, quantile)
    plot.renderers[0].data_source = source  # Update the data source for the renderer
    return plot

#Display the dropdown menu, quantile slider, button, and plot
#plot = update_plot(column_dropdown.param.value, quantile_slider.param.value)

def generate_plot(event):
    updated_plot = update_plot(column_dropdown.param.value, quantile_slider.param.value)
    #pn.Column(pn.Row(column_dropdown, generate_plot_button), quantile_slider, updated_plot).servable()

generate_plot_button.on_click(generate_plot)
selected_marker_plot = pn.Column(pn.Row(pn.Column(column_dropdown, marker_intensity_with_histogram )))
#pn.Column(pn.Row(pn.Column(column_dropdown, marker_intensity_with_histogram ), generate_plot_button)).servable()

import panel as pn
import numpy as np
import pandas as pd
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource, Button, Span, Label

# Assuming you have a DataFrame 'df' with the intensity columns
intensities = df.filter(like='Intensity').columns.tolist()

# Create a ColumnDataSource from the DataFrame
source = ColumnDataSource(df)

# Function to calculate quantile values
def calculate_quantiles(column, quantile):
    quantiles = df[column].quantile(q=[quantile, 0.50, 1 - quantile])
    return quantiles


# In[105]:


quantile_slider = pn.widgets.FloatSlider(name='Quantile', start=0.01, end=0.99, step=0.01, value=0.05)


# Bind the create_line_graph function to the quantile slider
#nucleus_size_line_graph = pn.bind(create_line_graph, quantile=quantile_slider.param.value)

# Layout the components in a Panel app
#nucleus_size_graph = pn.Column(nucleus_size_line_graph)


# In[106]:


#df["CKs_Cytoplasm_Intensity_Average"].quantile(q=qs)


# In[107]:


len(intensities)
if 'CKs_Cytoplasm_Intensity_Average' in intensities:
    print(1)


# In[108]:


df


# In[109]:


def calculate_cytoplasm_quantiles(column, quantile):
    # Print the columns of the DataFrame
    print("DataFrame columns:", df.columns)
    
    # Check if the column exists in the DataFrame
    if column not in df.columns:
        raise KeyError(f"Column '{column}' does not exist in the DataFrame.")
    
    quantiles = df[column].quantile(q=[quantile, 0.50, 1 - quantile])
    return quantiles

def create_cytoplasm_intensity_df(column, quantile):
    quantiles = calculate_cytoplasm_quantiles(column, quantile)
    output = pd.DataFrame(quantiles)
    return pn.pane.DataFrame(output)

# Bind the create_app function to the quantile slider
cytoplasm_quantile_output_app = pn.bind(create_cytoplasm_intensity_df, column='CKs_Cytoplasm_Intensity_Average', quantile=quantile_slider.param.value)

pn.Column(quantile_slider, cytoplasm_quantile_output_app)


# In[110]:


def calculate_cytoplasm_quantiles(column, quantile):
    quantiles = df[column].quantile(q=[quantile, 0.50, 1 - quantile])
    return quantiles

def create_cytoplasm_intensity_df(column, quantile):
    quantiles = calculate_cytoplasm_quantiles(column, quantile)
    output = pd.DataFrame(quantiles)
    # Create a Dataframe widget to display the output
    output_widget = pn.pane.DataFrame(output)
    return output_widget


# Bind the create_app function to the quantile slider
cytoplasm_quantile_output_app = pn.bind(create_cytoplasm_intensity_df, column='CKs_Cytoplasm_Intensity_Average', quantile = quantile_slider.param.value)
pn.Column(quantile_slider,cytoplasm_quantile_output_app)


# ## I.5. COLUMNS OF INTERESTS

# In[111]:


# Remove columns containing "DAPI"
df = df[[x for x in df.columns.values if 'DAPI' not in x]]

print("Columns are now...")
print([c for c in df.columns.values])


# In[112]:


# Create lists of full names and shortened names to use in plotting
full_to_short_names, short_to_full_names =  \
    shorten_feature_names(df.columns.values[~df.columns.isin(not_intensities)])

short_to_full_names


# In[113]:


# Save this data to a metadata file
filename = os.path.join(metadata_dir, "full_to_short_column_names.csv")
fh = open(filename, "w")
fh.write("full_name,short_name\n")
for k,v in full_to_short_names.items():
    fh.write(k + "," + v + "\n")
    
fh.close()
print("The full_to_short_column_names.csv file was created !")


# In[114]:


# Save this data to a metadata file
filename = os.path.join(metadata_dir, "short_to_full_column_names.csv")
fh = open(filename, "w")
fh.write("short_name,full_name\n")
for k,v in short_to_full_names.items():
    fh.write(k + "," + v + "\n")
    
fh.close()
print("The short_to_full_column_names.csv file was created !")


# ## I.6. EXPOSURE TIME

# In[115]:


#import the ashlar analysis file 
file_path = os.path.join(metadata_dir, 'combined_metadata.csv')
ashlar_analysis = pd.read_csv(file_path)
ashlar_analysis 


# In[116]:


# Extracting and renaming columns
new_df = ashlar_analysis[['Name', 'Cycle', 'ChannelIndex', 'ExposureTime']].copy()
new_df.rename(columns={
    'Name': 'Target',
    'Cycle': 'Round',
    'ChannelIndex': 'Channel'
}, inplace=True)

# Applying suffixes to the columns
new_df['Round'] = 'R' + new_df['Round'].astype(str)
new_df['Channel'] = 'c' + new_df['Channel'].astype(str) 

# Save to CSV
new_df.to_csv('Ashlar_Exposure_Time.csv', index=False)

# Print the new dataframe
print(new_df)


# In[117]:


# Here, we want to end up with a data structure that incorporates metadata on each intensity marker column used in our big dataframe in an easy-to-use format. 
# This is going to include the full name of the intensity marker columns in the big data frame, 
# the corresponding round and channel, 
# the target protein (e.g., CD45), 
# and the segmentation localization information (cell, cytoplasm, nucleus)

# We can use this data structure to assign unique colors to all channels and rounds, for example, for use in later visualizations
# Exposure_time file from ASHLAR analysis
filename = "Exposure_Time.csv"
filename = os.path.join(metadata_dir, filename)
exp_df = pd.read_csv(filename)

print(exp_df)

# Verify file imported correctly
# File length
print("df's shape: ", exp_df.shape)
# Headers
expected_headers =['Round','Target','Exp','Channel']
compare_headers(expected_headers, exp_df.columns.values, "Imported metadata file")

# Missingness
if exp_df.isnull().any().any():
    print("\nexp_df has null value(s) in row(s):")
    print(exp_df[exp_df.isna().any(axis=1)])
else:
    print("\nNo null values detected.")


# In[118]:


if len(exp_df['Target']) > len(exp_df['Target'].unique()):
    print("One or more non-unique Target values in exp_df. Currently not supported.")
exp_df = exp_df.drop_duplicates(subset = 'Target').reindex()


# In[119]:


# sort exp_df by the values in the 'Target' column in ascending order and then retrieve the first few rows of the sorted df
exp_df.sort_values(by = ['Target']).head()


# In[120]:


# Create lowercase version of target
exp_df['target_lower'] = exp_df['Target'].str.lower()
exp_df.head()


# In[121]:


# Create df that contains marker intensity columns in our df that aren't in not_intensities
intensities = pd.DataFrame({'full_column':df.columns.values[~df.columns.isin(not_intensities)]})

intensities


# In[122]:


# Extract the marker information from the `full_column`, which corresponds to full column in big dataframe
# Use regular expressions (regex) to isolate the part of the field that begins (^) with an alphanumeric value (W), and ends with an underscore (_)
# '$' is end of line
intensities['marker'] = intensities['full_column'].str.extract(r'([^\W_]+)')
# convert to lowercase
intensities['marker_lower'] = intensities['marker'].str.lower()

intensities


# In[123]:


# Subset the intensities df to exclude any column pertaining to DAPI
intensities = intensities.loc[intensities['marker_lower'] != 'dapi']

intensities.head()


# In[124]:


# Merge the intensities andexp_df together to create metadata
metadata = pd.merge(exp_df, intensities, how = 'left', left_on = 'target_lower',right_on = 'marker_lower')
metadata = metadata.drop(columns = ['marker_lower'])
metadata = metadata.dropna()

# Target is the capitalization from the Exposure_Time.csv
# target_lower is Target in small caps
# marker is the extracted first component of the full column in segmentation data, with corresponding capitalization
metadata


# In[125]:


# Add a column to signify marker target localisation.
# Use a lambda to determine segmented location of intensity marker column and update metadata accordingly
# Using the add_metadata_location() function in my_modules.py
metadata['localisation'] = metadata.apply(
    lambda row: add_metadata_location(row), axis = 1)


# In[126]:


mlid = metadata


# In[127]:


# Save this data structure to the metadata folder
# don't want to add color in because that's better off treating color the same for round, channel, and sample
filename = "marker_intensity_metadata.csv"
filename = os.path.join(metadata_dir, filename)
metadata.to_csv(filename, index = False)
print("The marker_intensity_metadata.csv file was created !")



# ## I.7. COLORS WORKFLOW

# ### I.7.1. CHANNELS COLORS


# we want colors that are categorical, since Channel is a non-ordered category (yes, they are numbered, but arbitrarily). 
# A categorical color palette will have dissimilar colors.
# Get those unique colors
if len(metadata.Channel.unique()) > 10:
    print("WARNING: There are more unique channel values than \
    there are colors to choose from. Select different palette, e.g., \
    continuous palette 'husl'.")
channel_color_values = sb.color_palette("bright",n_colors = len(metadata.Channel.unique()))
# chose 'colorblind' because it is categorical and we're unlikely to have > 10

# You can customize the colors for each channel here
custom_colors = {
    'c2': 'lightgreen',
    'c3': 'tomato',
    'c4': 'pink',
    'c5': 'turquoise'
}

custom_colors_values = sb.palplot(sb.color_palette([custom_colors.get(ch, 'blue') for ch in metadata.Channel.unique()]))

# Display those unique customs colors
print("Unique channels are:", metadata.Channel.unique())
sb.palplot(sb.color_palette(channel_color_values))


# In[131]:


# Function to create a palette plot with custom colors
def create_palette_plot():
    # Get unique channels
    unique_channels = metadata.Channel.unique()
    
    # Define custom colors for each channel
    custom_colors = {
        'c2': 'lightgreen',
        'c3': 'tomato',
        'c4': 'pink',
        'c5': 'turquoise'
    }
    
    # Get custom colors for each channel
    colors = [custom_colors.get(ch, 'blue') for ch in unique_channels]
    
    # Create a palette plot (palplot)
    palette_plot = sb.palplot(sb.color_palette(colors))
    channel_color_values = sb.color_palette("bright",n_colors = len(metadata.Channel.unique()))
    channel_color_values = sb.palplot(channel_color_values)
    return palette_plot, channel_color_values


# Create the palette plot directly
palette_plot = create_palette_plot()

# Define the Panel app layout
app_palette_plot = pn.Column(
    pn.pane.Markdown("### Custom Color Palette"),
    palette_plot, 
)

# Function to create a palette plot with custom colors
def create_palette_plot(custom_colors):
    # Get unique channels
    unique_channels = metadata.Channel.unique()
    
    # Get custom colors for each channel
    colors = [custom_colors.get(ch, 'blue') for ch in unique_channels]
    
    # Create a palette plot (palplot)
    palette_plot = sb.palplot(sb.color_palette(colors))
    
    return palette_plot

# Define custom colors for each channel
custom_colors = {
    'c2': 'lightgreen',
    'c3': 'tomato',
    'c4': 'pink',
    'c5': 'turquoise'
}

# Display those unique customs colo
print("Unique channels are:", metadata.Channel.unique())
# Function to bind create_palette_plot
app_palette_plot = create_palette_plot(custom_colors)


#app_palette_plot.servable()


# In[133]:


# Store in a dictionary
channel_color_dict = dict(zip(metadata.Channel.unique(), channel_color_values))
channel_color_dict
for k,v in channel_color_dict.items():
    channel_color_dict[k] = np.float64(v)

channel_color_dict


# In[134]:


color_df_channel = color_dict_to_df(channel_color_dict, "Channel")

# Save to file in metadatadirectory
filename = "channel_color_data.csv"
filename = os.path.join(metadata_dir, filename)
color_df_channel.to_csv(filename, index = False)

color_df_channel


# In[135]:


# Legend of channel info only
g  = plt.figure(figsize = (1,1)).add_subplot(111)
g.axis('off')
handles = []
for item in channel_color_dict.keys():
        h = g.bar(0,0, color = channel_color_dict[item],
                  label = item, linewidth =0)
        handles.append(h)
first_legend = plt.legend(handles=handles, loc='upper right', title = 'Channel'),
                            # box_to_anchor=(10,10), 
                             #       bbox_transform=plt.gcf().transFigure)

filename = "Channel_legend.png"
filename = os.path.join(metadata_images_dir, filename)
plt.savefig(filename, bbox_inches = 'tight')

# ### I.7.2. ROUNDS COLORS


# we want colors that are sequential, since Round is an ordered category. 
# We can still generate colors that are easy to distinguish. Also, many of the categorical palettes cap at at about 10 or so unique colors, and repeat from there. 
# We do not want any repeats!
round_color_values = sb.cubehelix_palette(
    len(metadata.Round.unique()), start=1, rot= -0.75, dark=0.19, light=.85, reverse=True)
# round_color_values = sb.color_palette("cubehelix",n_colors = len(metadata.Round.unique()))
# chose 'cubehelix' because it is sequential, and round is a continuous process
# each color value is a tuple of three values: (R, G, B)
print(metadata.Round.unique())

sb.palplot(sb.color_palette(round_color_values))

## TO-DO: write what these parameters mean


# In[137]:


# Store in a dictionary
round_color_dict = dict(zip(metadata.Round.unique(), round_color_values))

for k,v in round_color_dict.items():
    round_color_dict[k] = np.float64(v)

round_color_dict


# In[138]:


color_df_round = color_dict_to_df(round_color_dict, "Round")

# Save to file in metadatadirectory
filename = "round_color_data.csv"
filename = os.path.join(metadata_dir, filename)
color_df_round.to_csv(filename, index = False)

color_df_round

# Legend of round info only

round_legend  = plt.figure(figsize = (1,1)).add_subplot(111)
round_legend.axis('off')
handles = []
for item in round_color_dict.keys():
        h = round_legend.bar(0,0, color = round_color_dict[item],
                  label = item, linewidth =0)
        handles.append(h)
first_legend = plt.legend(handles=handles, loc='upper right', title = 'Round'),
                            # bbox_to_anchor=(10,10), 
                             #       bbox_transform=plt.gcf().transFigure)

filename = "Round_legend.png"
filename = os.path.join(metadata_images_dir, filename)
plt.savefig(filename, bbox_inches = 'tight')


# ### I.7.3. SAMPLES COLORS

# In[140]:


# we want colors that are neither sequential nor categorical. 
# Categorical would be ideal if we could generate an arbitrary number of colors, but I do not think that we can. 
# Hense, we will choose `n` colors from a continuous palette. First we will generate the right number of colors. Later, we will assign TMA samples to gray.

# Get those unique colors
color_values = sb.color_palette("husl",n_colors = len(ls_samples))#'HLS'
# each color value is a tuple of three values: (R, G, B)

# Display those unique colors
sb.palplot(sb.color_palette(color_values))


# In[141]:


TMA_samples = [s for s in df.Sample_ID.unique() if 'TMA' in s]
TMA_color_values = sb.color_palette(n_colors = len(TMA_samples),palette = "gray")
sb.palplot(sb.color_palette(TMA_color_values))


# In[142]:


# Store in a dictionary
color_dict = dict()
color_dict = dict(zip(df.Sample_ID.unique(), color_values))

# Replace all TMA samples' colors with gray
i = 0
for key in color_dict.keys():
    if 'TMA' in key:
        color_dict[key] = TMA_color_values[i]
        i +=1

color_dict

color_df_sample = color_dict_to_df(color_dict, "Sample_ID")

# Save to file in metadatadirectory
filename = "sample_color_data.csv"
filename = os.path.join(metadata_dir, filename)
color_df_sample.to_csv(filename, index = False)

color_df_sample


# Legend of sample info only
g  = plt.figure(figsize = (1,1)).add_subplot(111)
g.axis('off')
handles = []
for item in color_dict.keys():
        h = g.bar(0,0, color = color_dict[item],
                  label = item, linewidth =0)
        handles.append(h)
first_legend = plt.legend(handles=handles, loc='upper right', title = 'Sample')

filename = "Sample_legend.png"
filename = os.path.join(metadata_images_dir, filename)
plt.savefig(filename, bbox_inches = 'tight')


# ### I.7.4. CLUSTERS COLORS

'''if 'cluster' in df.columns:
    cluster_color_values = sb.color_palette("hls",n_colors = len(df.cluster.unique()))

    #print(sorted(test_df.cluster.unique()))
    # Display those unique colors
    sb.palplot(sb.color_palette(cluster_color_values))
    
    cluster_color_dict = dict(zip(sorted(test_df.cluster.unique()), cluster_color_values))
    print(cluster_color_dict)
    
    # Create dataframe
    cluster_color_df = color_dict_to_df(cluster_color_dict, "cluster")
    cluster_color_df.head()

    # Save to file in metadatadirectory
    filename = "cluster_color_data.csv"
    filename = os.path.join(metadata_dir, filename)
    cluster_color_df.to_csv(filename, index = False) 



# Legend of cluster info only

if 'cluster' in df.columns:
    g  = plt.figure(figsize = (1,1)).add_subplot(111)
    g.axis('off')
    handles = []
    for item in sorted(cluster_color_dict.keys()):
            h = g.bar(0,0, color = cluster_color_dict[item],
                      label = item, linewidth =0)
            handles.append(h)
    first_legend = plt.legend(handles=handles, loc='upper right', title = 'Cluster'),


    filename = "Clustertype_legend.png"
    filename = os.path.join(metadata_images_dir, filename)
    plt.savefig(filename, bbox_inches = 'tight')'''

mlid.head()


metadata



import io
import panel as pn
pn.extension()

file_input = pn.widgets.FileInput()

file_input


def transform_data(variable, window, sigma):
    """Calculates the rolling average and identifies outliers"""
    avg = metadata[variable].rolling(window=window).mean()
    residual = metadata[variable] - avg
    std = residual.rolling(window=window).std()
    outliers = np.abs(residual) > std * sigma
    return avg, avg[outliers]


def get_plot(variable="Exp", window=30, sigma=10):
    """Plots the rolling average and the outliers"""
    avg, highlight = transform_data(variable, window, sigma)
    return avg.hvplot(
        height=300, legend=False,
    ) * highlight.hvplot.scatter(padding=0.1, legend=False)


variable_widget = pn.widgets.Select(name="Target", value="Exp", options=list(metadata.columns))
window_widget = pn.widgets.IntSlider(name="window", value=30, start=1, end=60)
sigma_widget = pn.widgets.IntSlider(name="sigma", value=10, start=0, end=20)

app = pn.template.GoldenTemplate(
    site="Cyc-IF",
    title="Quality Control",
    main=[
        pn.Tabs(
            ("Dataframes", pn.Column(
                pn.Row(csv_files_button,pn.bind(handle_click, csv_files_button.param.clicks)),
                pn.pane.Markdown("### The Dataframe uploaded:"), pn.pane.DataFrame(intial_dataframe),
                #pn.pane.Markdown("### The Exposure time DataFrame is :"), pn.pane.DataFrame(exp_df.head()),
                pn.pane.Markdown("### The DataFrame after merging CycIF data x metadata :"), pn.pane.DataFrame(merged_dataframe.head()),
            )),
            ("Quality Control", pn.Column(
                quality_check(quality_control_df, not_intensities)
                #pn.pane.Markdown("### The Quality check results are:"), quality_check_results(check_shape, check_no_null, check_all_expected_files_present, check_zero_intensities)
            )),
            ("Intensities", pn.Column(
                pn.pane.Markdown("### The Not Intensities DataFrame after processing is :"), pn.pane.DataFrame(not_intensities_df, height=250),
                pn.pane.Markdown("### Select Intensities to be included"), updated_intensities,
                #pn.pane.Markdown("### The Intensities DataFrame"), intensities_df,
                #pn.pane.Markdown("### The metadata obtained that specifies the localisation:"), pn.pane.DataFrame(mlid.head())
            )),
            ("Plots", pn.Column(
                #pn.pane.Markdown(" ### Nucleus Size Distribution: "), pn.Row(nucleus_size_line_graph_with_histogram, num_of_cell_removal),
                #pn.pane.Markdown(" ### Nucleus Size Distribution: "), pn.Row(plot1,layout2),
                #pn.pane.Markdown("### Nucleus Distribution Plot:"), pn.Column(nucleus_size_plot, nucleus_size_graph),
                pn.pane.Markdown(" ### Intensity Average Plot:"), pn.Row(selected_marker_plot,num_of_cell_removal_intensity ),                
                #pn.Column(pn.Column(column_dropdown, generate_plot_button), quantile_slider, plot),
                #pn.pane.Markdown("### Cytoplasm Intensity Plot:"), cytoplasm_intensity_plot,
                #pn.pane.Markdown("### AF555_Cell_Intensity_Average:"), quantile_output_app,
                #pn.pane.Markdown("### Distribution of AF555_Cell_Intensity_Average with Quantiles:"), quantile_intensity_plot)
            )),
            
),
    ])
    
app.servable()

if __name__ == "__main__":
    pn.serve(app, port=5007)