import math import numpy as np import cv2 def db_eval_iou(annotation, segmentation, void_pixels=None): """ Compute region similarity as the Jaccard Index. Arguments: annotation (ndarray): binary annotation map. segmentation (ndarray): binary segmentation map. void_pixels (ndarray): optional mask with void pixels Return: jaccard (float): region similarity """ assert annotation.shape == segmentation.shape, \ f'Annotation({annotation.shape}) and segmentation:{segmentation.shape} dimensions do not match.' annotation = annotation.astype(bool) segmentation = segmentation.astype(bool) if void_pixels is not None: assert annotation.shape == void_pixels.shape, \ f'Annotation({annotation.shape}) and void pixels:{void_pixels.shape} dimensions do not match.' void_pixels = void_pixels.astype(bool) else: void_pixels = np.zeros_like(segmentation) # Intersection between all sets inters = np.sum((segmentation & annotation) & np.logical_not(void_pixels), axis=(-2, -1)) union = np.sum((segmentation | annotation) & np.logical_not(void_pixels), axis=(-2, -1)) j = inters / union if j.ndim == 0: j = 1 if np.isclose(union, 0) else j else: j[np.isclose(union, 0)] = 1 return j def db_eval_boundary(annotation, segmentation, void_pixels=None, bound_th=0.008): assert annotation.shape == segmentation.shape if void_pixels is not None: assert annotation.shape == void_pixels.shape if annotation.ndim == 3: n_frames = annotation.shape[0] f_res = np.zeros(n_frames) for frame_id in range(n_frames): void_pixels_frame = None if void_pixels is None else void_pixels[frame_id, :, :, ] f_res[frame_id] = f_measure(segmentation[frame_id, :, :, ], annotation[frame_id, :, :], void_pixels_frame, bound_th=bound_th) elif annotation.ndim == 2: f_res = f_measure(segmentation, annotation, void_pixels, bound_th=bound_th) else: raise ValueError(f'db_eval_boundary does not support tensors with {annotation.ndim} dimensions') return f_res def f_measure(foreground_mask, gt_mask, void_pixels=None, bound_th=0.008): """ Compute mean,recall and decay from per-frame evaluation. Calculates precision/recall for boundaries between foreground_mask and gt_mask using morphological operators to speed it up. Arguments: foreground_mask (ndarray): binary segmentation image. gt_mask (ndarray): binary annotated image. void_pixels (ndarray): optional mask with void pixels Returns: F (float): boundaries F-measure """ assert np.atleast_3d(foreground_mask).shape[2] == 1 if void_pixels is not None: void_pixels = void_pixels.astype(bool) else: void_pixels = np.zeros_like(foreground_mask).astype(bool) bound_pix = bound_th if bound_th >= 1 else \ np.ceil(bound_th * np.linalg.norm(foreground_mask.shape)) # Get the pixel boundaries of both masks fg_boundary = _seg2bmap(foreground_mask * np.logical_not(void_pixels)) gt_boundary = _seg2bmap(gt_mask * np.logical_not(void_pixels)) from skimage.morphology import disk # fg_dil = binary_dilation(fg_boundary, disk(bound_pix)) fg_dil = cv2.dilate(fg_boundary.astype(np.uint8), disk(bound_pix).astype(np.uint8)) # gt_dil = binary_dilation(gt_boundary, disk(bound_pix)) gt_dil = cv2.dilate(gt_boundary.astype(np.uint8), disk(bound_pix).astype(np.uint8)) # Get the intersection gt_match = gt_boundary * fg_dil fg_match = fg_boundary * gt_dil # Area of the intersection n_fg = np.sum(fg_boundary) n_gt = np.sum(gt_boundary) # % Compute precision and recall if n_fg == 0 and n_gt > 0: precision = 1 recall = 0 elif n_fg > 0 and n_gt == 0: precision = 0 recall = 1 elif n_fg == 0 and n_gt == 0: precision = 1 recall = 1 else: precision = np.sum(fg_match) / float(n_fg) recall = np.sum(gt_match) / float(n_gt) # Compute F measure if precision + recall == 0: F = 0 else: F = 2 * precision * recall / (precision + recall) return F def _seg2bmap(seg, width=None, height=None): """ From a segmentation, compute a binary boundary map with 1 pixel wide boundaries. The boundary pixels are offset by 1/2 pixel towards the origin from the actual segment boundary. Arguments: seg : Segments labeled from 1..k. width : Width of desired bmap <= seg.shape[1] height : Height of desired bmap <= seg.shape[0] Returns: bmap (ndarray): Binary boundary map. David Martin January 2003 """ seg = seg.astype(bool) seg[seg > 0] = 1 assert np.atleast_3d(seg).shape[2] == 1 width = seg.shape[1] if width is None else width height = seg.shape[0] if height is None else height h, w = seg.shape[:2] ar1 = float(width) / float(height) ar2 = float(w) / float(h) assert not ( width > w | height > h | abs(ar1 - ar2) > 0.01 ), "Can" "t convert %dx%d seg to %dx%d bmap." % (w, h, width, height) e = np.zeros_like(seg) s = np.zeros_like(seg) se = np.zeros_like(seg) e[:, :-1] = seg[:, 1:] s[:-1, :] = seg[1:, :] se[:-1, :-1] = seg[1:, 1:] b = seg ^ e | seg ^ s | seg ^ se b[-1, :] = seg[-1, :] ^ e[-1, :] b[:, -1] = seg[:, -1] ^ s[:, -1] b[-1, -1] = 0 if w == width and h == height: bmap = b else: bmap = np.zeros((height, width)) for x in range(w): for y in range(h): if b[y, x]: j = 1 + math.floor((y - 1) + height / h) i = 1 + math.floor((x - 1) + width / h) bmap[j, i] = 1 return bmap if __name__ == '__main__': from davis2017.davis import DAVIS from davis2017.results import Results dataset = DAVIS(root='input_dir/ref', subset='val', sequences='aerobatics') results = Results(root_dir='examples/osvos') # Test timing F measure for seq in dataset.get_sequences(): all_gt_masks, _, all_masks_id = dataset.get_all_masks(seq, True) all_gt_masks, all_masks_id = all_gt_masks[:, 1:-1, :, :], all_masks_id[1:-1] all_res_masks = results.read_masks(seq, all_masks_id) f_metrics_res = np.zeros(all_gt_masks.shape[:2]) for ii in range(all_gt_masks.shape[0]): f_metrics_res[ii, :] = db_eval_boundary(all_gt_masks[ii, ...], all_res_masks[ii, ...]) # Run using to profile code: python -m cProfile -o f_measure.prof metrics.py # snakeviz f_measure.prof