from mmengine.runner.checkpoint import CheckpointLoader def load_checkpoint_with_prefix(filename, prefix=None, map_location='cpu', logger='current'): """Load partial pretrained model with specific prefix. Args: prefix (str): The prefix of sub-module. filename (str): Accept local filepath, URL, ``torchvision://xxx``, ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for details. map_location (str | None): Same as :func:`torch.load`. Defaults to None. logger: logger Returns: dict or OrderedDict: The loaded checkpoint. """ checkpoint = CheckpointLoader.load_checkpoint(filename, map_location=map_location, logger=logger) if 'state_dict' in checkpoint: state_dict = checkpoint['state_dict'] else: state_dict = checkpoint if not prefix: return state_dict if not prefix.endswith('.'): prefix += '.' prefix_len = len(prefix) state_dict = { k[prefix_len:]: v for k, v in state_dict.items() if k.startswith(prefix) } assert state_dict, f'{prefix} is not in the pretrained model' return state_dict