import json import os import torch import psutil import gc from tqdm import tqdm from concurrent.futures import ThreadPoolExecutor, as_completed from src.data.objaverse import load_obj from src.utils import mesh from src.utils.material import Material import argparse def bytes_to_megabytes(bytes): return bytes / (1024 * 1024) def bytes_to_gigabytes(bytes): return bytes / (1024 * 1024 * 1024) def print_memory_usage(stage): process = psutil.Process(os.getpid()) memory_info = process.memory_info() allocated = torch.cuda.memory_allocated() / 1024**2 cached = torch.cuda.memory_reserved() / 1024**2 print( f"[{stage}] Process memory: {memory_info.rss / 1024**2:.2f} MB, " f"Allocated CUDA memory: {allocated:.2f} MB, Cached CUDA memory: {cached:.2f} MB" ) def process_obj(index, root_dir, final_save_dir, paths): obj_path = os.path.join(root_dir, paths[index], paths[index] + '.obj') mtl_path = os.path.join(root_dir, paths[index], paths[index] + '.mtl') if os.path.exists(os.path.join(final_save_dir, f"{paths[index]}.pth")): return None try: with torch.no_grad(): ref_mesh, vertices, faces, normals, nfaces, texcoords, tfaces, uber_material = load_obj( obj_path, return_attributes=True ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ref_mesh = mesh.compute_tangents(ref_mesh) with open(mtl_path, 'r') as file: lines = file.readlines() if len(lines) >= 250: return None final_mesh_attributes = { "v_pos": ref_mesh.v_pos.detach().cpu(), "v_nrm": ref_mesh.v_nrm.detach().cpu(), "v_tex": ref_mesh.v_tex.detach().cpu(), "v_tng": ref_mesh.v_tng.detach().cpu(), "t_pos_idx": ref_mesh.t_pos_idx.detach().cpu(), "t_nrm_idx": ref_mesh.t_nrm_idx.detach().cpu(), "t_tex_idx": ref_mesh.t_tex_idx.detach().cpu(), "t_tng_idx": ref_mesh.t_tng_idx.detach().cpu(), "mat_dict": {key: ref_mesh.material[key] for key in ref_mesh.material.mat_keys}, } torch.save(final_mesh_attributes, f"{final_save_dir}/{paths[index]}.pth") print(f"==> Saved to {final_save_dir}/{paths[index]}.pth") del ref_mesh torch.cuda.empty_cache() return paths[index] except Exception as e: print(f"Failed to process {paths[index]}: {e}") return None finally: gc.collect() torch.cuda.empty_cache() def main(root_dir, save_dir): os.makedirs(save_dir, exist_ok=True) finish_lists = os.listdir(save_dir) paths = os.listdir(root_dir) valid_uid = [] print_memory_usage("Start") batch_size = 100 num_batches = (len(paths) + batch_size - 1) // batch_size for batch in tqdm(range(num_batches)): start_index = batch * batch_size end_index = min(start_index + batch_size, len(paths)) with ThreadPoolExecutor(max_workers=8) as executor: futures = [ executor.submit(process_obj, index, root_dir, save_dir, paths) for index in range(start_index, end_index) ] for future in as_completed(futures): result = future.result() if result is not None: valid_uid.append(result) print_memory_usage(f"=====> After processing batch {batch + 1}") torch.cuda.empty_cache() gc.collect() print_memory_usage("End") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Process OBJ files and save final results.") parser.add_argument("root_dir", type=str, help="Directory containing the root OBJ files.") parser.add_argument("save_dir", type=str, help="Directory to save the processed results.") args = parser.parse_args() main(args.root_dir, args.save_dir)