Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| import spaces | |
| from PIL import Image | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| from huggingface_hub import hf_hub_download | |
| from safetensors.torch import load_file | |
| from tqdm import tqdm | |
| import gc | |
| import math | |
| import os | |
| import base64 | |
| import json | |
| from optimization import optimize_pipeline_ | |
| from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline | |
| from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel | |
| from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 | |
| from lora_manager import LoRAManager | |
| # System prompt for prompt enhancement | |
| SYSTEM_PROMPT = ''' | |
| # Edit Instruction Rewriter | |
| You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited. | |
| Please strictly follow the rewriting rules below: | |
| ## 1. General Principles | |
| - Keep the rewritten prompt **concise and comprehensive**. Avoid overly long sentences and unnecessary descriptive language. | |
| - If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary. | |
| - Keep the main part of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility. | |
| - All added objects or modifications must align with the logic and style of the scene in the input images. | |
| - If multiple sub-images are to be generated, describe the content of each sub-image individually. | |
| ## 2. Task-Type Handling Rules | |
| ### 1. Add, Delete, Replace Tasks | |
| - If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar. | |
| - If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example: | |
| > Original: "Add an animal" | |
| > Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera" | |
| - Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid. | |
| - For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X. | |
| ### 2. Text Editing Tasks | |
| - All text content must be enclosed in English double quotes `" "`. Keep the original language of the text, and keep the capitalization. | |
| - Both adding new text and replacing existing text are text replacement tasks, For example: | |
| - Replace "xx" to "yy" | |
| - Replace the mask / bounding box to "yy" | |
| - Replace the visual object to "yy" | |
| - Specify text position, color, and layout only if user has required. | |
| - If font is specified, keep the original language of the font. | |
| ### 3. Human Editing Tasks | |
| - Make the smallest changes to the given user's prompt. | |
| - If changes to background, action, expression, camera shot, or ambient lighting are required, please list each modification individually. | |
| - **Edits to makeup or facial features / expression must be subtle, not exaggerated, and must preserve the subject's identity consistency.** | |
| > Original: "Add eyebrows to the face" | |
| > Rewritten: "Slightly thicken the person's eyebrows with little change, look natural." | |
| ### 4. Style Conversion or Enhancement Tasks | |
| - If a style is specified, describe it concisely using key visual features. For example: | |
| > Original: "Disco style" | |
| > Rewritten: "1970s disco style: flashing lights, disco ball, mirrored walls, vibrant colors" | |
| - For style reference, analyze the original image and extract key characteristics (color, composition, texture, lighting, artistic style, etc.), integrating them into the instruction. | |
| - **Colorization tasks (including old photo restoration) must use the fixed template:** | |
| "Restore and colorize the old photo." | |
| - Clearly specify the object to be modified. For example: | |
| > Original: Modify the subject in Picture 1 to match the style of Picture 2. | |
| > Rewritten: "Change the girl in Picture 1 to the ink-wash style of Picture 2 — rendered in black-and-white watercolor with soft color transitions. | |
| ### 5. Material Replacement | |
| - Clearly specify the object and the material. For example: "Change the material of the apple to papercut style." | |
| - For text material replacement, use the fixed template: | |
| "Change the material of text "xxxx" to laser style" | |
| ### 6. Logo/Pattern Editing | |
| - Material replacement should preserve the original shape and structure as much as possible. For example: | |
| > Original: "Convert to sapphire material" | |
| > Rewritten: "Convert the main subject in the image to sapphire material, preserving similar shape and structure" | |
| - When migrating logos/patterns to new scenes, ensure shape and structure consistency. For example: | |
| > Original: "Migrate the logo in the image to a new scene" | |
| > Rewritten: "Migrate the logo in the image to a new scene, preserving similar shape and structure" | |
| ### 7. Multi-Image Tasks | |
| - Rewritten prompts must clearly point out which image's element is being modified. For example: | |
| > Original: "Replace the subject of picture 1 with the subject of picture 2" | |
| > Rewritten: "Replace the girl of picture 1 with the boy of picture 2, keeping picture 2's background unchanged" | |
| - For stylization tasks, describe the reference image's style in the rewritten prompt, while preserving the visual content of the source image. | |
| ## 3. Rationale and Logic Check | |
| - Resolve contradictory instructions: e.g., "Remove all trees but keep all trees" requires logical correction. | |
| - Supplement missing critical information: e.g., if position is unspecified, choose a reasonable area based on composition (near subject, blank space, center/edge, etc.). | |
| # Output Format Example | |
| ```json | |
| { | |
| "Rewritten": "..." | |
| } | |
| ``` | |
| ''' | |
| def encode_image(pil_image): | |
| """Encode PIL image to base64 string for API calls""" | |
| import io | |
| buffered = io.BytesIO() | |
| pil_image.save(buffered, format="PNG") | |
| return base64.b64encode(buffered.getvalue()).decode("utf-8") | |
| def polish_prompt_hf(prompt, img_list): | |
| """Rewrite prompt using Hugging Face InferenceClient""" | |
| from huggingface_hub import InferenceClient | |
| # Ensure HF_TOKEN is set | |
| api_key = os.environ.get("HF_TOKEN") | |
| if not api_key: | |
| print("Warning: HF_TOKEN not set. Falling back to original prompt.") | |
| return prompt | |
| try: | |
| # Format the prompt for the API | |
| formatted_prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:" | |
| # Initialize the client | |
| client = InferenceClient( | |
| provider="novita", | |
| api_key=api_key, | |
| ) | |
| # Format the messages for the chat completions API | |
| sys_prompt = "you are a helpful assistant, you should provide useful answers to users." | |
| # Create messages structure | |
| messages = [ | |
| {"role": "system", "content": sys_prompt}, | |
| {"role": "user", "content": []} | |
| ] | |
| # Add images to the message | |
| for img in img_list: | |
| messages[1]["content"].append( | |
| {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{encode_image(img)}"}}) | |
| # Add text to the message | |
| messages[1]["content"].append({"type": "text", "text": f"{formatted_prompt}"}) | |
| completion = client.chat.completions.create( | |
| model="Qwen/Qwen3-Next-80B-A3B-Instruct", | |
| messages=messages, | |
| ) | |
| # Parse the response | |
| result = completion.choices[0].message.content | |
| # Try to extract JSON if present | |
| if '{"Rewritten"' in result: | |
| try: | |
| # Clean up the response | |
| result = result.replace('```json', '').replace('```', '') | |
| result_json = json.loads(result) | |
| polished_prompt = result_json.get('Rewritten', result) | |
| except: | |
| polished_prompt = result | |
| else: | |
| polished_prompt = result | |
| polished_prompt = polished_prompt.strip().replace("\n", " ") | |
| return polished_prompt | |
| except Exception as e: | |
| print(f"Error during API call to Hugging Face: {e}") | |
| # Fallback to original prompt if enhancement fails | |
| return prompt | |
| # Define simplified LoRA configurations with Lightning as always-loaded base | |
| LORA_CONFIG = { | |
| "Lightning (4-Step)": { | |
| "repo_id": "lightx2v/Qwen-Image-Lightning", | |
| "filename": "Qwen-Image-Lightning-4steps-V2.0.safetensors", | |
| "type": "base", | |
| "method": "standard", | |
| "always_load": True, | |
| "prompt_template": "{prompt}", | |
| "description": "Fast 4-step generation LoRA - always loaded as base optimization.", | |
| }, | |
| "None": { | |
| "repo_id": None, | |
| "filename": None, | |
| "type": "edit", | |
| "method": "none", | |
| "prompt_template": "{prompt}", | |
| "description": "Use the base Qwen-Image-Edit model with Lightning optimization.", | |
| }, | |
| "Object Remover": { | |
| "repo_id": "valiantcat/Qwen-Image-Edit-Remover-General-LoRA", | |
| "filename": "qwen-edit-remover.safetensors", | |
| "type": "edit", | |
| "method": "standard", | |
| "prompt_template": "Remove {prompt}", | |
| "description": "Removes objects from an image while maintaining background consistency.", | |
| }, | |
| } | |
| # Initialize LoRA Manager | |
| print("Initializing model...") | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Scheduler configuration for Lightning | |
| scheduler_config = { | |
| "base_image_seq_len": 256, | |
| "base_shift": math.log(3), | |
| "invert_sigmas": False, | |
| "max_image_seq_len": 8192, | |
| "max_shift": math.log(3), | |
| "num_train_timesteps": 1000, | |
| "shift": 1.0, | |
| "shift_terminal": None, | |
| "stochastic_sampling": False, | |
| "time_shift_type": "exponential", | |
| "use_beta_sigmas": False, | |
| "use_dynamic_shifting": True, | |
| "use_exponential_sigmas": False, | |
| "use_karras_sigmas": False, | |
| } | |
| # Initialize scheduler with Lightning config | |
| scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) | |
| # Load the model pipeline | |
| pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", torch_dtype=dtype).to(device) | |
| # Apply the same optimizations from the first version | |
| pipe.transformer.__class__ = QwenImageTransformer2DModel | |
| pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) | |
| # --- Ahead-of-time compilation --- | |
| optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt") | |
| # --- UI Constants and Helpers --- | |
| MAX_SEED = np.iinfo(np.int32).max | |
| # Load the model pipeline | |
| pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", | |
| scheduler=scheduler, | |
| torch_dtype=dtype).to(device) | |
| # Apply model optimizations | |
| pipe.transformer.__class__ = QwenImageTransformer2DModel | |
| pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) | |
| # Initialize LoRA Manager | |
| lora_manager = LoRAManager(pipe, device) | |
| # Always load Lightning LoRA first | |
| LIGHTNING_LORA_NAME = "Lightning (4-Step)" | |
| print(f"Loading always-active Lightning LoRA: {LIGHTNING_LORA_NAME}") | |
| # Load and register Lightning LoRA | |
| lightning_config = LORA_CONFIG[LIGHTNING_LORA_NAME] | |
| lightning_lora_path = hf_hub_download( | |
| repo_id=lightning_config["repo_id"], | |
| filename=lightning_config["filename"] | |
| ) | |
| lora_manager.register_lora(LIGHTNING_LORA_NAME, lightning_lora_path, **lightning_config) | |
| lora_manager.configure_lora(LIGHTNING_LORA_NAME, { | |
| "description": lightning_config["description"], | |
| "is_base": True | |
| }) | |
| # Load Lightning LoRA and keep it always active | |
| lora_manager.load_lora(LIGHTNING_LORA_NAME) | |
| lora_manager.fuse_lora(LIGHTNING_LORA_NAME) | |
| # Register other LoRAs (only Object Remover for testing) | |
| for lora_name, config in LORA_CONFIG.items(): | |
| if lora_name != LIGHTNING_LORA_NAME and config["repo_id"] is not None: | |
| lora_path = hf_hub_download(repo_id=config["repo_id"], filename=config["filename"]) | |
| lora_manager.register_lora(lora_name, lora_path, **config) | |
| original_transformer_state_dict = pipe.transformer.state_dict() | |
| print("Base model and Lightning LoRA loaded and ready.") | |
| def fuse_lora_manual(transformer, lora_state_dict, alpha=1.0): | |
| """Manual LoRA fusion method""" | |
| key_mapping = {} | |
| for key in lora_state_dict.keys(): | |
| base_key = key.replace('diffusion_model.', '').rsplit('.lora_', 1)[0] | |
| if base_key not in key_mapping: | |
| key_mapping[base_key] = {} | |
| if 'lora_A' in key: | |
| key_mapping[base_key]['down'] = lora_state_dict[key] | |
| elif 'lora_B' in key: | |
| key_mapping[base_key]['up'] = lora_state_dict[key] | |
| for name, module in tqdm(transformer.named_modules(), desc="Fusing layers"): | |
| if name in key_mapping and isinstance(module, torch.nn.Linear): | |
| lora_weights = key_mapping[name] | |
| if 'down' in lora_weights and 'up' in lora_weights: | |
| device = module.weight.device | |
| dtype = module.weight.dtype | |
| lora_down = lora_weights['down'].to(device, dtype=dtype) | |
| lora_up = lora_weights['up'].to(device, dtype=dtype) | |
| merged_delta = lora_up @ lora_down | |
| module.weight.data += alpha * merged_delta | |
| return transformer | |
| def load_and_fuse_additional_lora(lora_name): | |
| """ | |
| Load an additional LoRA while keeping Lightning LoRA always active. | |
| This enables combining Lightning's speed with other LoRA capabilities. | |
| """ | |
| config = LORA_CONFIG[lora_name] | |
| print(f"Loading additional LoRA: {lora_name} (Lightning will remain active)") | |
| # Get LoRA path from registry | |
| if lora_name in lora_manager.lora_registry: | |
| lora_path = lora_manager.lora_registry[lora_name]["lora_path"] | |
| else: | |
| print(f"LoRA {lora_name} not found in registry") | |
| return | |
| # Always keep Lightning LoRA loaded | |
| # Load additional LoRA without resetting to base state | |
| if config["method"] == "standard": | |
| print("Using standard loading method...") | |
| # Load additional LoRA without fusing (to preserve Lightning) | |
| pipe.load_lora_weights(lora_path, adapter_names=[lora_name]) | |
| # Set both adapters as active | |
| pipe.set_adapters([LIGHTNING_LORA_NAME, lora_name]) | |
| print(f"Lightning + {lora_name} now active.") | |
| elif config["method"] == "manual_fuse": | |
| print("Using manual fusion method...") | |
| lora_state_dict = load_file(lora_path) | |
| # Manual fusion on top of Lightning | |
| pipe.transformer = fuse_lora_manual(pipe.transformer, lora_state_dict) | |
| print(f"Lightning + {lora_name} manually fused.") | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def load_and_fuse_lora(lora_name): | |
| """Legacy function for backward compatibility""" | |
| if lora_name == LIGHTNING_LORA_NAME: | |
| # Lightning is already loaded, just ensure it's active | |
| print("Lightning LoRA is already active.") | |
| pipe.set_adapters([LIGHTNING_LORA_NAME]) | |
| return | |
| load_and_fuse_additional_lora(lora_name) | |
| # Ahead-of-time compilation with minimal memory footprint | |
| # Use tiny images to minimize memory during compilation | |
| optimize_pipeline_(pipe, image=[Image.new("RGB", (64, 64)), Image.new("RGB", (64, 64))], prompt="test") | |
| print("Model compilation complete.") | |
| def infer( | |
| lora_name, | |
| input_image, | |
| style_image, | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| true_guidance_scale, | |
| num_inference_steps, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| """Main inference function with Lightning always active""" | |
| if not lora_name: | |
| raise gr.Error("Please select a LoRA model.") | |
| config = LORA_CONFIG[lora_name] | |
| if config["type"] == "style": | |
| if style_image is None: | |
| raise gr.Error("Style Transfer LoRA requires a Style Reference Image.") | |
| image_for_pipeline = style_image | |
| else: # 'edit' or 'base' | |
| if input_image is None: | |
| raise gr.Error("This LoRA requires an Input Image.") | |
| image_for_pipeline = input_image | |
| if not prompt and config["prompt_template"] != "change the face to face segmentation mask": | |
| raise gr.Error("A text prompt is required for this LoRA.") | |
| # Load additional LoRA while keeping Lightning active | |
| load_and_fuse_lora(lora_name) | |
| final_prompt = config["prompt_template"].format(prompt=prompt) | |
| if randomize_seed: | |
| seed = random.randint(0, np.iinfo(np.int32).max) | |
| generator = torch.Generator(device=device).manual_seed(int(seed)) | |
| print("--- Running Inference ---") | |
| print(f"LoRA: {lora_name} (with Lightning always active)") | |
| print(f"Prompt: {final_prompt}") | |
| print(f"Seed: {seed}, Steps: {num_inference_steps}, CFG: {true_guidance_scale}") | |
| with torch.inference_mode(): | |
| result_image = pipe( | |
| image=image_for_pipeline, | |
| prompt=final_prompt, | |
| negative_prompt=" ", | |
| num_inference_steps=int(num_inference_steps), | |
| generator=generator, | |
| true_cfg_scale=true_guidance_scale, | |
| ).images[0] | |
| # Don't unfuse Lightning - keep it active for next inference | |
| if lora_name != LIGHTNING_LORA_NAME: | |
| pipe.disable_adapters() # Disable additional LoRA but keep Lightning | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| return result_image, seed | |
| def on_lora_change(lora_name): | |
| """Dynamic UI component visibility handler""" | |
| config = LORA_CONFIG[lora_name] | |
| is_style_lora = config["type"] == "style" | |
| # Lightning LoRA info | |
| lightning_info = "⚡ **Lightning LoRA always active** - Fast 4-step generation enabled" | |
| return { | |
| lora_description: gr.Markdown(visible=True, value=f"**{lightning_info}** \n\n**Description:** {config['description']}"), | |
| input_image_box: gr.Image(visible=not is_style_lora, type="pil"), | |
| style_image_box: gr.Image(visible=is_style_lora, type="pil"), | |
| prompt_box: gr.Textbox(visible=(config["prompt_template"] != "change the face to face segmentation mask")) | |
| } | |
| with gr.Blocks(css="#col-container { margin: 0 auto; max-width: 1024px; }") as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.HTML('<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Logo" style="width: 400px; margin: 0 auto; display: block;">') | |
| gr.Markdown("<h2 style='text-align: center;'>Qwen-Image-Edit Multi-LoRA Playground</h2>") | |
| gr.Markdown(""" | |
| [Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. | |
| This demo uses the new [Qwen-Image-Edit-2509](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) with support for multiple LoRA adapters. | |
| **⚡ Lightning LoRA is always active for fast 4-step generation** - combine it with Object Remover for optimized performance. | |
| Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) to run locally with ComfyUI or diffusers. | |
| """) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| lora_selector = gr.Dropdown( | |
| label="Select Additional LoRA (Lightning Always Active)", | |
| choices=list(LORA_CONFIG.keys()), | |
| value=LIGHTNING_LORA_NAME, | |
| info="Lightning LoRA provides fast 4-step generation and is always active" | |
| ) | |
| lora_description = gr.Markdown(visible=False) | |
| input_image_box = gr.Image(label="Input Image", type="pil", visible=True) | |
| style_image_box = gr.Image(label="Style Reference Image", type="pil", visible=False) | |
| prompt_box = gr.Textbox(label="Prompt", placeholder="Describe the object to remove...") | |
| run_button = gr.Button("Generate!", variant="primary") | |
| with gr.Column(scale=1): | |
| result_image = gr.Image(label="Result", type="pil") | |
| used_seed = gr.Number(label="Used Seed", interactive=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed_slider = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, value=42) | |
| randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True) | |
| cfg_slider = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, step=0.1, value=4.0) | |
| steps_slider = gr.Slider(label="Inference Steps", minimum=4, maximum=50, step=1, value=4, info="Optimized for Lightning's 4-step generation") | |
| lora_selector.change( | |
| fn=on_lora_change, | |
| inputs=lora_selector, | |
| outputs=[lora_description, input_image_box, style_image_box, prompt_box] | |
| ) | |
| demo.load( | |
| fn=on_lora_change, | |
| inputs=lora_selector, | |
| outputs=[lora_description, input_image_box, style_image_box, prompt_box] | |
| ) | |
| run_button.click( | |
| fn=infer, | |
| inputs=[ | |
| lora_selector, | |
| input_image_box, style_image_box, | |
| prompt_box, | |
| seed_slider, randomize_seed_checkbox, | |
| cfg_slider, steps_slider | |
| ], | |
| outputs=[result_image, used_seed] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |