LPX55's picture
revert: temp revert for you animals for local debugging
54c487a
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from tqdm import tqdm
import gc
import math
import os
import base64
import json
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
from lora_manager import LoRAManager
# System prompt for prompt enhancement
SYSTEM_PROMPT = '''
# Edit Instruction Rewriter
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited.
Please strictly follow the rewriting rules below:
## 1. General Principles
- Keep the rewritten prompt **concise and comprehensive**. Avoid overly long sentences and unnecessary descriptive language.
- If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary.
- Keep the main part of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility.
- All added objects or modifications must align with the logic and style of the scene in the input images.
- If multiple sub-images are to be generated, describe the content of each sub-image individually.
## 2. Task-Type Handling Rules
### 1. Add, Delete, Replace Tasks
- If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar.
- If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example:
> Original: "Add an animal"
> Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera"
- Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid.
- For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X.
### 2. Text Editing Tasks
- All text content must be enclosed in English double quotes `" "`. Keep the original language of the text, and keep the capitalization.
- Both adding new text and replacing existing text are text replacement tasks, For example:
- Replace "xx" to "yy"
- Replace the mask / bounding box to "yy"
- Replace the visual object to "yy"
- Specify text position, color, and layout only if user has required.
- If font is specified, keep the original language of the font.
### 3. Human Editing Tasks
- Make the smallest changes to the given user's prompt.
- If changes to background, action, expression, camera shot, or ambient lighting are required, please list each modification individually.
- **Edits to makeup or facial features / expression must be subtle, not exaggerated, and must preserve the subject's identity consistency.**
> Original: "Add eyebrows to the face"
> Rewritten: "Slightly thicken the person's eyebrows with little change, look natural."
### 4. Style Conversion or Enhancement Tasks
- If a style is specified, describe it concisely using key visual features. For example:
> Original: "Disco style"
> Rewritten: "1970s disco style: flashing lights, disco ball, mirrored walls, vibrant colors"
- For style reference, analyze the original image and extract key characteristics (color, composition, texture, lighting, artistic style, etc.), integrating them into the instruction.
- **Colorization tasks (including old photo restoration) must use the fixed template:**
"Restore and colorize the old photo."
- Clearly specify the object to be modified. For example:
> Original: Modify the subject in Picture 1 to match the style of Picture 2.
> Rewritten: "Change the girl in Picture 1 to the ink-wash style of Picture 2 — rendered in black-and-white watercolor with soft color transitions.
### 5. Material Replacement
- Clearly specify the object and the material. For example: "Change the material of the apple to papercut style."
- For text material replacement, use the fixed template:
"Change the material of text "xxxx" to laser style"
### 6. Logo/Pattern Editing
- Material replacement should preserve the original shape and structure as much as possible. For example:
> Original: "Convert to sapphire material"
> Rewritten: "Convert the main subject in the image to sapphire material, preserving similar shape and structure"
- When migrating logos/patterns to new scenes, ensure shape and structure consistency. For example:
> Original: "Migrate the logo in the image to a new scene"
> Rewritten: "Migrate the logo in the image to a new scene, preserving similar shape and structure"
### 7. Multi-Image Tasks
- Rewritten prompts must clearly point out which image's element is being modified. For example:
> Original: "Replace the subject of picture 1 with the subject of picture 2"
> Rewritten: "Replace the girl of picture 1 with the boy of picture 2, keeping picture 2's background unchanged"
- For stylization tasks, describe the reference image's style in the rewritten prompt, while preserving the visual content of the source image.
## 3. Rationale and Logic Check
- Resolve contradictory instructions: e.g., "Remove all trees but keep all trees" requires logical correction.
- Supplement missing critical information: e.g., if position is unspecified, choose a reasonable area based on composition (near subject, blank space, center/edge, etc.).
# Output Format Example
```json
{
"Rewritten": "..."
}
```
'''
def encode_image(pil_image):
"""Encode PIL image to base64 string for API calls"""
import io
buffered = io.BytesIO()
pil_image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def polish_prompt_hf(prompt, img_list):
"""Rewrite prompt using Hugging Face InferenceClient"""
from huggingface_hub import InferenceClient
# Ensure HF_TOKEN is set
api_key = os.environ.get("HF_TOKEN")
if not api_key:
print("Warning: HF_TOKEN not set. Falling back to original prompt.")
return prompt
try:
# Format the prompt for the API
formatted_prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:"
# Initialize the client
client = InferenceClient(
provider="novita",
api_key=api_key,
)
# Format the messages for the chat completions API
sys_prompt = "you are a helpful assistant, you should provide useful answers to users."
# Create messages structure
messages = [
{"role": "system", "content": sys_prompt},
{"role": "user", "content": []}
]
# Add images to the message
for img in img_list:
messages[1]["content"].append(
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{encode_image(img)}"}})
# Add text to the message
messages[1]["content"].append({"type": "text", "text": f"{formatted_prompt}"})
completion = client.chat.completions.create(
model="Qwen/Qwen3-Next-80B-A3B-Instruct",
messages=messages,
)
# Parse the response
result = completion.choices[0].message.content
# Try to extract JSON if present
if '{"Rewritten"' in result:
try:
# Clean up the response
result = result.replace('```json', '').replace('```', '')
result_json = json.loads(result)
polished_prompt = result_json.get('Rewritten', result)
except:
polished_prompt = result
else:
polished_prompt = result
polished_prompt = polished_prompt.strip().replace("\n", " ")
return polished_prompt
except Exception as e:
print(f"Error during API call to Hugging Face: {e}")
# Fallback to original prompt if enhancement fails
return prompt
# Define simplified LoRA configurations with Lightning as always-loaded base
LORA_CONFIG = {
"Lightning (4-Step)": {
"repo_id": "lightx2v/Qwen-Image-Lightning",
"filename": "Qwen-Image-Lightning-4steps-V2.0.safetensors",
"type": "base",
"method": "standard",
"always_load": True,
"prompt_template": "{prompt}",
"description": "Fast 4-step generation LoRA - always loaded as base optimization.",
},
"None": {
"repo_id": None,
"filename": None,
"type": "edit",
"method": "none",
"prompt_template": "{prompt}",
"description": "Use the base Qwen-Image-Edit model with Lightning optimization.",
},
"Object Remover": {
"repo_id": "valiantcat/Qwen-Image-Edit-Remover-General-LoRA",
"filename": "qwen-edit-remover.safetensors",
"type": "edit",
"method": "standard",
"prompt_template": "Remove {prompt}",
"description": "Removes objects from an image while maintaining background consistency.",
},
}
# Initialize LoRA Manager
print("Initializing model...")
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Scheduler configuration for Lightning
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": math.log(3),
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3),
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None,
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
# Initialize scheduler with Lightning config
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
# Load the model pipeline
pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", torch_dtype=dtype).to(device)
# Apply the same optimizations from the first version
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
# --- Ahead-of-time compilation ---
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")
# --- UI Constants and Helpers ---
MAX_SEED = np.iinfo(np.int32).max
# Load the model pipeline
pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509",
scheduler=scheduler,
torch_dtype=dtype).to(device)
# Apply model optimizations
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
# Initialize LoRA Manager
lora_manager = LoRAManager(pipe, device)
# Always load Lightning LoRA first
LIGHTNING_LORA_NAME = "Lightning (4-Step)"
print(f"Loading always-active Lightning LoRA: {LIGHTNING_LORA_NAME}")
# Load and register Lightning LoRA
lightning_config = LORA_CONFIG[LIGHTNING_LORA_NAME]
lightning_lora_path = hf_hub_download(
repo_id=lightning_config["repo_id"],
filename=lightning_config["filename"]
)
lora_manager.register_lora(LIGHTNING_LORA_NAME, lightning_lora_path, **lightning_config)
lora_manager.configure_lora(LIGHTNING_LORA_NAME, {
"description": lightning_config["description"],
"is_base": True
})
# Load Lightning LoRA and keep it always active
lora_manager.load_lora(LIGHTNING_LORA_NAME)
lora_manager.fuse_lora(LIGHTNING_LORA_NAME)
# Register other LoRAs (only Object Remover for testing)
for lora_name, config in LORA_CONFIG.items():
if lora_name != LIGHTNING_LORA_NAME and config["repo_id"] is not None:
lora_path = hf_hub_download(repo_id=config["repo_id"], filename=config["filename"])
lora_manager.register_lora(lora_name, lora_path, **config)
original_transformer_state_dict = pipe.transformer.state_dict()
print("Base model and Lightning LoRA loaded and ready.")
def fuse_lora_manual(transformer, lora_state_dict, alpha=1.0):
"""Manual LoRA fusion method"""
key_mapping = {}
for key in lora_state_dict.keys():
base_key = key.replace('diffusion_model.', '').rsplit('.lora_', 1)[0]
if base_key not in key_mapping:
key_mapping[base_key] = {}
if 'lora_A' in key:
key_mapping[base_key]['down'] = lora_state_dict[key]
elif 'lora_B' in key:
key_mapping[base_key]['up'] = lora_state_dict[key]
for name, module in tqdm(transformer.named_modules(), desc="Fusing layers"):
if name in key_mapping and isinstance(module, torch.nn.Linear):
lora_weights = key_mapping[name]
if 'down' in lora_weights and 'up' in lora_weights:
device = module.weight.device
dtype = module.weight.dtype
lora_down = lora_weights['down'].to(device, dtype=dtype)
lora_up = lora_weights['up'].to(device, dtype=dtype)
merged_delta = lora_up @ lora_down
module.weight.data += alpha * merged_delta
return transformer
def load_and_fuse_additional_lora(lora_name):
"""
Load an additional LoRA while keeping Lightning LoRA always active.
This enables combining Lightning's speed with other LoRA capabilities.
"""
config = LORA_CONFIG[lora_name]
print(f"Loading additional LoRA: {lora_name} (Lightning will remain active)")
# Get LoRA path from registry
if lora_name in lora_manager.lora_registry:
lora_path = lora_manager.lora_registry[lora_name]["lora_path"]
else:
print(f"LoRA {lora_name} not found in registry")
return
# Always keep Lightning LoRA loaded
# Load additional LoRA without resetting to base state
if config["method"] == "standard":
print("Using standard loading method...")
# Load additional LoRA without fusing (to preserve Lightning)
pipe.load_lora_weights(lora_path, adapter_names=[lora_name])
# Set both adapters as active
pipe.set_adapters([LIGHTNING_LORA_NAME, lora_name])
print(f"Lightning + {lora_name} now active.")
elif config["method"] == "manual_fuse":
print("Using manual fusion method...")
lora_state_dict = load_file(lora_path)
# Manual fusion on top of Lightning
pipe.transformer = fuse_lora_manual(pipe.transformer, lora_state_dict)
print(f"Lightning + {lora_name} manually fused.")
gc.collect()
torch.cuda.empty_cache()
def load_and_fuse_lora(lora_name):
"""Legacy function for backward compatibility"""
if lora_name == LIGHTNING_LORA_NAME:
# Lightning is already loaded, just ensure it's active
print("Lightning LoRA is already active.")
pipe.set_adapters([LIGHTNING_LORA_NAME])
return
load_and_fuse_additional_lora(lora_name)
# Ahead-of-time compilation with minimal memory footprint
# Use tiny images to minimize memory during compilation
optimize_pipeline_(pipe, image=[Image.new("RGB", (64, 64)), Image.new("RGB", (64, 64))], prompt="test")
print("Model compilation complete.")
@spaces.GPU(duration=60)
def infer(
lora_name,
input_image,
style_image,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
"""Main inference function with Lightning always active"""
if not lora_name:
raise gr.Error("Please select a LoRA model.")
config = LORA_CONFIG[lora_name]
if config["type"] == "style":
if style_image is None:
raise gr.Error("Style Transfer LoRA requires a Style Reference Image.")
image_for_pipeline = style_image
else: # 'edit' or 'base'
if input_image is None:
raise gr.Error("This LoRA requires an Input Image.")
image_for_pipeline = input_image
if not prompt and config["prompt_template"] != "change the face to face segmentation mask":
raise gr.Error("A text prompt is required for this LoRA.")
# Load additional LoRA while keeping Lightning active
load_and_fuse_lora(lora_name)
final_prompt = config["prompt_template"].format(prompt=prompt)
if randomize_seed:
seed = random.randint(0, np.iinfo(np.int32).max)
generator = torch.Generator(device=device).manual_seed(int(seed))
print("--- Running Inference ---")
print(f"LoRA: {lora_name} (with Lightning always active)")
print(f"Prompt: {final_prompt}")
print(f"Seed: {seed}, Steps: {num_inference_steps}, CFG: {true_guidance_scale}")
with torch.inference_mode():
result_image = pipe(
image=image_for_pipeline,
prompt=final_prompt,
negative_prompt=" ",
num_inference_steps=int(num_inference_steps),
generator=generator,
true_cfg_scale=true_guidance_scale,
).images[0]
# Don't unfuse Lightning - keep it active for next inference
if lora_name != LIGHTNING_LORA_NAME:
pipe.disable_adapters() # Disable additional LoRA but keep Lightning
gc.collect()
torch.cuda.empty_cache()
return result_image, seed
def on_lora_change(lora_name):
"""Dynamic UI component visibility handler"""
config = LORA_CONFIG[lora_name]
is_style_lora = config["type"] == "style"
# Lightning LoRA info
lightning_info = "⚡ **Lightning LoRA always active** - Fast 4-step generation enabled"
return {
lora_description: gr.Markdown(visible=True, value=f"**{lightning_info}** \n\n**Description:** {config['description']}"),
input_image_box: gr.Image(visible=not is_style_lora, type="pil"),
style_image_box: gr.Image(visible=is_style_lora, type="pil"),
prompt_box: gr.Textbox(visible=(config["prompt_template"] != "change the face to face segmentation mask"))
}
with gr.Blocks(css="#col-container { margin: 0 auto; max-width: 1024px; }") as demo:
with gr.Column(elem_id="col-container"):
gr.HTML('<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Logo" style="width: 400px; margin: 0 auto; display: block;">')
gr.Markdown("<h2 style='text-align: center;'>Qwen-Image-Edit Multi-LoRA Playground</h2>")
gr.Markdown("""
[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series.
This demo uses the new [Qwen-Image-Edit-2509](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) with support for multiple LoRA adapters.
**⚡ Lightning LoRA is always active for fast 4-step generation** - combine it with Object Remover for optimized performance.
Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) to run locally with ComfyUI or diffusers.
""")
with gr.Row():
with gr.Column(scale=1):
lora_selector = gr.Dropdown(
label="Select Additional LoRA (Lightning Always Active)",
choices=list(LORA_CONFIG.keys()),
value=LIGHTNING_LORA_NAME,
info="Lightning LoRA provides fast 4-step generation and is always active"
)
lora_description = gr.Markdown(visible=False)
input_image_box = gr.Image(label="Input Image", type="pil", visible=True)
style_image_box = gr.Image(label="Style Reference Image", type="pil", visible=False)
prompt_box = gr.Textbox(label="Prompt", placeholder="Describe the object to remove...")
run_button = gr.Button("Generate!", variant="primary")
with gr.Column(scale=1):
result_image = gr.Image(label="Result", type="pil")
used_seed = gr.Number(label="Used Seed", interactive=False)
with gr.Accordion("Advanced Settings", open=False):
seed_slider = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, value=42)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True)
cfg_slider = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, step=0.1, value=4.0)
steps_slider = gr.Slider(label="Inference Steps", minimum=4, maximum=50, step=1, value=4, info="Optimized for Lightning's 4-step generation")
lora_selector.change(
fn=on_lora_change,
inputs=lora_selector,
outputs=[lora_description, input_image_box, style_image_box, prompt_box]
)
demo.load(
fn=on_lora_change,
inputs=lora_selector,
outputs=[lora_description, input_image_box, style_image_box, prompt_box]
)
run_button.click(
fn=infer,
inputs=[
lora_selector,
input_image_box, style_image_box,
prompt_box,
seed_slider, randomize_seed_checkbox,
cfg_slider, steps_slider
],
outputs=[result_image, used_seed]
)
if __name__ == "__main__":
demo.launch()