import streamlit as st import os import ragfunctions st.title("RAG Chatbot") # Setting the LLM with st.expander("Setting the LLM"): st.markdown("This page is used to have a chat with the uploaded documents") with st.form("setting"): row_1 = st.columns(3) with row_1[0]: token = st.text_input("Hugging Face Token", type="password") with row_1[1]: llm_model = st.text_input("LLM model", value="tiiuae/falcon-7b-instruct") with row_1[2]: instruct_embeddings = st.text_input("Instruct Embeddings", value="hkunlp/instructor-xl") row_2 = st.columns(3) with row_2[0]: vector_store_list = os.listdir("vector store/") default_choice = ( vector_store_list.index('naruto_snake') if 'naruto_snake' in vector_store_list else 0 ) existing_vector_store = st.selectbox("Vector Store", vector_store_list, default_choice) with row_2[1]: temperature = st.number_input("Temperature", value=1.0, step=0.1) with row_2[2]: max_length = st.number_input("Maximum character length", value=300, step=1) create_chatbot = st.form_submit_button("Create chatbot") # Prepare the LLM model if "conversation" not in st.session_state: st.session_state.conversation = None if token: st.session_state.conversation = ragfunctions.prepare_rag_llm( token, llm_model, instruct_embeddings, existing_vector_store, temperature, max_length ) # Chat history if "history" not in st.session_state: st.session_state.history = [] # Source documents if "source" not in st.session_state: st.session_state.source = [] # Display chats for message in st.session_state.history: with st.chat_message(message["role"]): st.markdown(message["content"]) # Ask a question if question := st.chat_input("Ask a question"): # Append user question to history st.session_state.history.append({"role": "user", "content": question}) # Add user question with st.chat_message("user"): st.markdown(question) # Answer the question answer, doc_source = ragfunctions.generate_answer(question, token) with st.chat_message("assistant"): st.write(answer) # Append assistant answer to history st.session_state.history.append({"role": "assistant", "content": answer}) # Append the document sources st.session_state.source.append({"question": question, "answer": answer, "document": doc_source}) # Source documents with st.expander("Source documents"): st.write(st.session_state.source)