from ..data_aug import pil_image_to_tensor from ..ab_dataset import ABDataset from ..dataset_split import train_val_split from ..dataset_cache import get_dataset_cache_path, read_cached_dataset_status, cache_dataset_status from .mm_image_folder import MMImageFolder import os from typing import Dict, List, Optional from torchvision.transforms import Compose from ..registery import dataset_register with open(os.path.join(os.path.dirname(__file__), 'imagenet_classes.txt'), 'r') as f: classes = [line.split(' ')[2].strip() for line in f.readlines()] assert len(classes) == 1000 @dataset_register( name='ImageNet-MM', classes=classes, task_type='MM Image Classification', object_type='Generic Object', class_aliases=[], shift_type=None ) class ImageNet(ABDataset): def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose], classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): if transform is None: transform = pil_image_to_tensor() self.transform = transform root_dir = os.path.join(root_dir, 'train' if split != 'test' else 'val') dataset = MMImageFolder(root_dir, [c for c in classes if c not in ignore_classes], transform=transform) cache_file_path = get_dataset_cache_path(root_dir, classes, ignore_classes, idx_map) if os.path.exists(cache_file_path): dataset.samples = read_cached_dataset_status(cache_file_path, 'ImageNet-' + split) else: if len(ignore_classes) > 0: ignore_classes_idx = [classes.index(c) for c in ignore_classes] dataset.samples = [s for s in dataset.samples if s[1] not in ignore_classes_idx] if idx_map is not None: dataset.samples = [(s[0], idx_map[s[1]]) if s[1] in idx_map.keys() else s for s in dataset.samples] cache_dataset_status(dataset.samples, cache_file_path, 'ImageNet-' + split) if split != 'test': dataset = train_val_split(dataset, split) return dataset