import torch from new_impl.cv.elasticdnn.api.algs.fm_lora_glip import ElasticDNN_FMLoRAAlg from methods.elasticdnn.model.base import ElasticDNNUtil from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util from glip import FMLoRA_GLIP_Util, ElasticDNN_OfflineMMDetFMModel from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util from methods.elasticdnn.model.vit import ElasticViTUtil from utils.dl.common.model import LayerActivation, get_module from utils.common.exp import save_models_dict_for_init, get_res_save_dir from data import build_scenario import torch.nn.functional as F from maskrcnn_benchmark.structures.bounding_box import BoxList import os os.environ['TOKENIZERS_PARALLELISM'] = 'true' class ElasticDNN_GLIP_OfflineMMDetFMModel(ElasticDNN_OfflineMMDetFMModel): def generate_md_by_reducing_width(self, reducing_width_ratio, samples: torch.Tensor): raise NotImplementedError def get_feature_hook(self) -> LayerActivation: return LayerActivation(get_module(self.models_dict['main'], 'visual_projection'), True, self.device), 'output' def get_elastic_dnn_util(self) -> ElasticDNNUtil: raise NotImplementedError def forward_to_get_task_loss(self, x, y, *args, **kwargs): # x: clip-preprocessed images and texts, y: label indexes x['for_training'] = True # for k, v in x.items(): # if isinstance(v, torch.Tensor): # print(k, v.size()) # elif isinstance(v, (list, tuple)): # print(k, len(v)) # else: # print(k, v) loss_dict = self.infer(x) losses = sum(loss for loss in loss_dict.values()) # print(losses) return losses def get_lora_util(self) -> FMLoRA_Util: return FMLoRA_GLIP_Util() def get_task_head_params(self): return [] # class ElasticDNN_CLIP_OfflineMMClsMDModel(ElasticDNN_OfflineMMClsMDModel): # def get_feature_hook(self) -> LayerActivation: # return LayerActivation(get_module(self.models_dict['main'], 'visual_projection'), True, self.device), 'output' # def forward_to_get_task_loss(self, x, y, *args, **kwargs): # x['for_training'] = True # output = self.infer(x) # return output.loss if __name__ == '__main__': # 1. init scenario scenario = build_scenario( source_datasets_name=['MM-COCO2017'], target_datasets_order=['MM-CityscapesDet'], da_mode='close_set', data_dirs={ 'MM-COCO2017': '/data/zql/datasets/coco2017', 'MM-CityscapesDet': '/data/zql/datasets/cityscape' }, ) cfg_path = 'new_impl/cv/glip/object_detection/pretrained_model/glip_Swin_T_O365_GoldG.yaml' model_path = 'new_impl/cv/glip/object_detection/pretrained_model/glip_tiny_model_o365_goldg_cc_sbu.pth' # 2. init model from glip import glip_model, build_transform, run_ner, collect_mm_fn config, gmodel = glip_model(cfg_path, model_path) transform = build_transform(config, None) fm_models_dict_path = save_models_dict_for_init({ 'main': gmodel }, __file__, 'fm_glip_pretrained') device = 'cuda' # total_class_to_idx_map = {} # for v in scenario.all_datasets_e2e_class_to_idx_map.values(): # for k, v2 in v.items(): # if k in total_class_to_idx_map.keys(): # assert total_class_to_idx_map[k] == v2 # total_class_to_idx_map[k] = v2 fm_model = ElasticDNN_GLIP_OfflineMMDetFMModel('fm', fm_models_dict_path, device, collate_fn=collect_mm_fn) # 3. init alg models = { 'fm': fm_model } import sys fm_lora_alg = ElasticDNN_FMLoRAAlg(models, get_res_save_dir(__file__, tag="results")) from PIL import Image, ImageDraw import requests import numpy as np from evaluator import MMCOCODecoder ori_image = Image.open('new_impl/cv/glip/object_detection/000000103759.jpg').convert("RGB") image = transform(np.asarray(ori_image)[:, :, [2, 1, 0]]) text = 'orange. umbrella. ' targets = BoxList(torch.FloatTensor([[0., 0., 0., 0.]]), image_size=image.size()[1:], mode='xyxy') targets.add_field('caption', text) targets.add_field('tokens_positive', run_ner(text)) targets.add_field('labels', torch.LongTensor([0])) samples = {'images' : [image], 'targets' : [targets]} # 4. run alg from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup fm_lora_alg.run(scenario, hyps={ 'launch_tbboard': False, 'transform' : transform, 'samples_size': samples, 'ab_r': 8, 'train_batch_size': 16, 'val_batch_size': 1, 'num_workers': 16, 'optimizer': 'Adam', 'optimizer_args': {'lr': 1e-4, 'betas': [0.9, 0.999]}, 'scheduler': 'LambdaLR', 'scheduler_args': {'lr_lambda': get_linear_schedule_with_warmup(10000, 70000)}, 'num_iters': 6500, 'val_freq': 100 }, collate_fn=collect_mm_fn)