import numpy as np import torch from torch import nn import torch.nn.functional as F from video3d.triplane_texture.ops import bias_act from video3d.triplane_texture.ops import fma from video3d.triplane_texture.ops import upfirdn2d from video3d.triplane_texture.ops import conv2d_resample from video3d.triplane_texture.ops import grid_sample_gradfix from video3d.triplane_texture import misc def modulated_conv2d( x, # Input tensor of shape [batch_size, in_channels, in_height, in_width]. weight, # Weight tensor of shape [out_channels, in_channels, kernel_height, kernel_width]. styles, # Modulation coefficients of shape [batch_size, in_channels]. noise=None, # Optional noise tensor to add to the output activations. up=1, # Integer upsampling factor. down=1, # Integer downsampling factor. padding=0, # Padding with respect to the upsampled image. resample_filter=None, # Low-pass filter to apply when resampling activations. Must be prepared beforehand by calling upfirdn2d.setup_filter(). demodulate=True, # Apply weight demodulation? flip_weight=True, # False = convolution, True = correlation (matches torch.nn.functional.conv2d). fused_modconv=True, # Perform modulation, convolution, and demodulation as a single fused operation? ): batch_size = x.shape[0] out_channels, in_channels, kh, kw = weight.shape misc.assert_shape(weight, [out_channels, in_channels, kh, kw]) # [OIkk] misc.assert_shape(x, [batch_size, in_channels, None, None]) # [NIHW] misc.assert_shape(styles, [batch_size, in_channels]) # [NI] # Pre-normalize inputs to avoid FP16 overflow. if x.dtype == torch.float16 and demodulate: weight = weight * (1 / np.sqrt(in_channels * kh * kw) / weight.norm( float('inf'), dim=[1, 2, 3], keepdim=True)) # max_Ikk styles = styles / styles.norm(float('inf'), dim=1, keepdim=True) # max_I # Calculate per-sample weights and demodulation coefficients. w = None dcoefs = None if demodulate or fused_modconv: w = weight.unsqueeze(0) # [NOIkk] w = w * styles.reshape(batch_size, 1, -1, 1, 1) # [NOIkk] if demodulate: dcoefs = (w.square().sum(dim=[2, 3, 4]) + 1e-8).rsqrt() # [NO] if demodulate and fused_modconv: w = w * dcoefs.reshape(batch_size, -1, 1, 1, 1) # [NOIkk] # Execute by scaling the activations before and after the convolution. if not fused_modconv: x = x * styles.to(x.dtype).reshape(batch_size, -1, 1, 1) x = conv2d_resample.conv2d_resample( x=x, w=weight.to(x.dtype), f=resample_filter, up=up, down=down, padding=padding, flip_weight=flip_weight) if demodulate and noise is not None: x = fma.fma(x, dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1), noise.to(x.dtype)) elif demodulate: x = x * dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1) elif noise is not None: x = x.add_(noise.to(x.dtype)) return x # Execute as one fused op using grouped convolution. with misc.suppress_tracer_warnings(): # this value will be treated as a constant batch_size = int(batch_size) misc.assert_shape(x, [batch_size, in_channels, None, None]) x = x.reshape(1, -1, *x.shape[2:]) w = w.reshape(-1, in_channels, kh, kw) x = conv2d_resample.conv2d_resample( x=x, w=w.to(x.dtype), f=resample_filter, up=up, down=down, padding=padding, groups=batch_size, flip_weight=flip_weight) x = x.reshape(batch_size, -1, *x.shape[2:]) if noise is not None: x = x.add_(noise) return x def modulated_fc( x, # Input tensor of shape [batch_size, n_feature, in_channels]. weight, # Weight tensor of shape [out_channels, in_channels]. styles, # Modulation coefficients of shape [batch_size, in_channels]. noise=None, # Optional noise tensor to add to the output activations. demodulate=True, # Apply weight demodulation? ): batch_size = x.shape[0] n_feature = x.shape[1] out_channels, in_channels = weight.shape misc.assert_shape(weight, [out_channels, in_channels]) misc.assert_shape(x, [batch_size, n_feature, in_channels]) misc.assert_shape(styles, [batch_size, in_channels]) assert demodulate # Pre-normalize inputs to avoid FP16 overflow. if x.dtype == torch.float16 and demodulate: weight = weight * (1 / np.sqrt(in_channels) / weight.norm(float('inf'), dim=[1, 2, 3], keepdim=True)) # max_Ikk styles = styles / styles.norm(float('inf'), dim=1, keepdim=True) # max_I # Calculate per-sample weights and demodulation coefficients. w = weight.unsqueeze(0) # [NOI] w = w * styles.unsqueeze(dim=1) # [NOI] dcoefs = (w.square().sum(dim=[2]) + 1e-8).rsqrt() # [NO] w = w * dcoefs.unsqueeze(dim=-1) # [NOI] x = torch.bmm(x, w.permute(0, 2, 1)) if noise is not None: x = x.add_(noise) return x class FullyConnectedLayer(torch.nn.Module): def __init__( self, in_features, # Number of input features. out_features, # Number of output features. bias=True, # Apply additive bias before the activation function? activation='linear', # Activation function: 'relu', 'lrelu', etc. device='cuda', lr_multiplier=1, # Learning rate multiplier. bias_init=0, # Initial value for the additive bias. ): super().__init__() self.in_features = in_features self.out_features = out_features self.activation = activation self.weight = torch.nn.Parameter(torch.randn([out_features, in_features], device=device) / lr_multiplier) self.bias = torch.nn.Parameter( torch.full([out_features], np.float32(bias_init), device=device)) if bias else None self.weight_gain = lr_multiplier / np.sqrt(in_features) self.bias_gain = lr_multiplier def forward(self, x): w = self.weight.to(x.dtype) * self.weight_gain b = self.bias if b is not None: b = b.to(x.dtype) if self.bias_gain != 1: b = b * self.bias_gain if self.activation == 'linear' and b is not None: x = torch.addmm(b.unsqueeze(0), x, w.t()) else: x = x.matmul(w.t()) x = bias_act.bias_act(x, b, act=self.activation) return x def extra_repr(self): return f'in_features={self.in_features:d}, out_features={self.out_features:d}, activation={self.activation:s}' class SynthesisLayer(torch.nn.Module): def __init__( self, in_channels, # Number of input channels. out_channels, # Number of output channels. w_dim, # Intermediate latent (W) dimensionality. resolution, # Resolution of this layer. kernel_size=3, # Convolution kernel size. up=1, # Integer upsampling factor. use_noise=True, # Enable noise input? activation='lrelu', # Activation function: 'relu', 'lrelu', etc. device='cuda', resample_filter=[1, 3, 3, 1], # Low-pass filter to apply when resampling activations. conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping. channels_last=False, # Use channels_last format for the weights? ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.w_dim = w_dim self.resolution = resolution self.up = up self.use_noise = use_noise self.activation = activation self.conv_clamp = conv_clamp self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) self.padding = kernel_size // 2 self.act_gain = bias_act.activation_funcs[activation].def_gain self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1, device=device) memory_format = torch.channels_last if channels_last else torch.contiguous_format self.weight = torch.nn.Parameter( torch.randn([out_channels, in_channels, kernel_size, kernel_size], device=device).to( memory_format=memory_format)) if use_noise: self.register_buffer('noise_const', torch.randn([resolution, resolution], device=device)) self.noise_strength = torch.nn.Parameter(torch.zeros([], device=device)) self.bias = torch.nn.Parameter(torch.zeros([out_channels], device=device)) def forward(self, x, w, noise_mode='random', fused_modconv=True, gain=1): assert noise_mode in ['random', 'const', 'none'] in_resolution = self.resolution // self.up misc.assert_shape(x, [None, self.in_channels, in_resolution, in_resolution]) styles = self.affine(w) noise = None if self.use_noise and noise_mode == 'random': noise = torch.randn( [x.shape[0], 1, self.resolution, self.resolution], device=x.device) * self.noise_strength if self.use_noise and noise_mode == 'const': noise = self.noise_const * self.noise_strength flip_weight = (self.up == 1) # slightly faster x = modulated_conv2d( x=x, weight=self.weight, styles=styles, noise=noise, up=self.up, padding=self.padding, resample_filter=self.resample_filter, flip_weight=flip_weight, fused_modconv=fused_modconv) act_gain = self.act_gain * gain act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None x = bias_act.bias_act(x, self.bias.to(x.dtype), act=self.activation, gain=act_gain, clamp=act_clamp) return x def extra_repr(self): return ' '.join( [ f'in_channels={self.in_channels:d}, out_channels={self.out_channels:d}, w_dim={self.w_dim:d},', f'resolution={self.resolution:d}, up={self.up}, activation={self.activation:s}']) class ImplicitSynthesisLayer(torch.nn.Module): def __init__( self, in_channels, # Number of input channels. out_channels, # Number of output channels. w_dim, # Intermediate latent (W) dimensionality. use_noise=True, # Enable noise input? activation='lrelu', # Activation function: 'relu', 'lrelu', etc. resample_filter=[1, 3, 3, 1], # Low-pass filter to apply when resampling activations. device='cuda', conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping. ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.w_dim = w_dim self.use_noise = use_noise self.activation = activation self.conv_clamp = conv_clamp self.act_gain = bias_act.activation_funcs[activation].def_gain self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1, device=device) self.weight = torch.nn.Parameter(torch.randn([out_channels, in_channels], device=device)) self.bias = torch.nn.Parameter(torch.zeros([out_channels], device=device)) def forward(self, w, x, noise_mode='random', gain=1): # x is the feature############# # w is the condition assert noise_mode in ['random', 'const', 'none'] styles = self.affine(w) noise = None # in te beegining, we didn't use the noise x = modulated_fc(x=x, weight=self.weight, styles=styles, noise=noise) act_gain = self.act_gain * gain act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None x = bias_act.bias_act( x, self.bias.to(x.dtype), act=self.activation, gain=act_gain, clamp=act_clamp, dim=2) # the last dim is the feature dim return x def extra_repr(self): return ' '.join( [ f'in_channels={self.in_channels:d}, out_channels={self.out_channels:d}, w_dim={self.w_dim:d},', f'activation={self.activation:s}']) class Conv2dLayer(torch.nn.Module): def __init__( self, in_channels, # Number of input channels. out_channels, # Number of output channels. kernel_size, # Width and height of the convolution kernel. device='cuda', bias=True, # Apply additive bias before the activation function? activation='linear', # Activation function: 'relu', 'lrelu', etc. up=1, # Integer upsampling factor. down=1, # Integer downsampling factor. resample_filter=[1, 3, 3, 1], # Low-pass filter to apply when resampling activations. conv_clamp=None, # Clamp the output to +-X, None = disable clamping. channels_last=False, # Expect the input to have memory_format=channels_last? trainable=True, # Update the weights of this layer during training? ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.activation = activation self.up = up self.down = down self.conv_clamp = conv_clamp self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) self.padding = kernel_size // 2 self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2)) self.act_gain = bias_act.activation_funcs[activation].def_gain memory_format = torch.channels_last if channels_last else torch.contiguous_format weight = torch.randn([out_channels, in_channels, kernel_size, kernel_size], device=device).to( memory_format=memory_format) bias = torch.zeros([out_channels], device=device) if bias else None if trainable: self.weight = torch.nn.Parameter(weight) self.bias = torch.nn.Parameter(bias) if bias is not None else None else: self.register_buffer('weight', weight) if bias is not None: self.register_buffer('bias', bias) else: self.bias = None def forward(self, x, gain=1): w = self.weight * self.weight_gain b = self.bias.to(x.dtype) if self.bias is not None else None flip_weight = (self.up == 1) # slightly faster x = conv2d_resample.conv2d_resample( x=x, w=w.to(x.dtype), f=self.resample_filter, up=self.up, down=self.down, padding=self.padding, flip_weight=flip_weight) act_gain = self.act_gain * gain act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None x = bias_act.bias_act(x, b, act=self.activation, gain=act_gain, clamp=act_clamp) return x def extra_repr(self): return ' '.join( [ f'in_channels={self.in_channels:d}, out_channels={self.out_channels:d}, activation={self.activation:s},', f'up={self.up}, down={self.down}']) class ToRGBLayer(torch.nn.Module): def __init__( self, in_channels, out_channels, w_dim, kernel_size=1, conv_clamp=None, channels_last=False, device='cuda'): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.w_dim = w_dim self.conv_clamp = conv_clamp self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1, device=device) memory_format = torch.channels_last if channels_last else torch.contiguous_format self.weight = torch.nn.Parameter( torch.randn([out_channels, in_channels, kernel_size, kernel_size], device=device).to( memory_format=memory_format)) self.bias = torch.nn.Parameter(torch.zeros([out_channels], device=device)) self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2)) def forward(self, x, w, fused_modconv=True): styles = self.affine(w) * self.weight_gain x = modulated_conv2d(x=x, weight=self.weight, styles=styles, demodulate=False, fused_modconv=fused_modconv) x = bias_act.bias_act(x, self.bias.to(x.dtype), clamp=self.conv_clamp) return x def extra_repr(self): return f'in_channels={self.in_channels:d}, out_channels={self.out_channels:d}, w_dim={self.w_dim:d}' class SynthesisBlock(torch.nn.Module): def __init__( self, in_channels, # Number of input channels, 0 = first block. out_channels, # Number of output channels. w_dim, # Intermediate latent (W) dimensionality. resolution, # Resolution of this block. img_channels, # Number of output color channels. is_last, # Is this the last block? architecture='skip', # Architecture: 'orig', 'skip', 'resnet'. resample_filter=[1, 3, 3, 1], # Low-pass filter to apply when resampling activations. conv_clamp=256, # Clamp the output of convolution layers to +-X, None = disable clamping. use_fp16=False, # Use FP16 for this block? fp16_channels_last=False, # Use channels-last memory format with FP16? fused_modconv_default=True, # Default value of fused_modconv. 'inference_only' = True for inference, False for training. device='cuda', first_layer=False, **layer_kwargs, # Arguments for SynthesisLayer. ): assert architecture in ['orig', 'skip', 'resnet'] super().__init__() self.first_layer = first_layer self.in_channels = in_channels self.w_dim = w_dim self.resolution = resolution self.img_channels = img_channels self.is_last = is_last self.architecture = architecture self.use_fp16 = use_fp16 self.channels_last = (use_fp16 and fp16_channels_last) self.fused_modconv_default = fused_modconv_default self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) self.num_conv = 0 self.num_torgb = 0 if in_channels == 0: self.const = torch.nn.Parameter(torch.randn([out_channels, resolution, resolution], device=device)) if in_channels != 0: if self.first_layer: self.conv0 = SynthesisLayer( in_channels, out_channels, w_dim=w_dim, resolution=resolution, conv_clamp=conv_clamp, channels_last=self.channels_last, device=device, **layer_kwargs) else: self.conv0 = SynthesisLayer( in_channels, out_channels, w_dim=w_dim, resolution=resolution, up=2, resample_filter=resample_filter, conv_clamp=conv_clamp, channels_last=self.channels_last, device=device, **layer_kwargs) self.num_conv += 1 self.conv1 = SynthesisLayer( out_channels, out_channels, w_dim=w_dim, resolution=resolution, conv_clamp=conv_clamp, channels_last=self.channels_last, device=device, **layer_kwargs) self.num_conv += 1 if is_last or architecture == 'skip': self.torgb = ToRGBLayer( out_channels, img_channels, w_dim=w_dim, conv_clamp=conv_clamp, channels_last=self.channels_last, device=device) self.num_torgb += 1 if in_channels != 0 and architecture == 'resnet': self.skip = Conv2dLayer( in_channels, out_channels, kernel_size=1, bias=False, up=2, resample_filter=resample_filter, channels_last=self.channels_last, device=device) def forward(self, x, img, ws, force_fp32=False, fused_modconv='inference_only', update_emas=False, **layer_kwargs): _ = update_emas # unused misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim]) w_iter = iter(ws.unbind(dim=1)) if ws.device.type != 'cuda': force_fp32 = True dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32 memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format if fused_modconv is None: fused_modconv = self.fused_modconv_default if fused_modconv == 'inference_only': fused_modconv = (not self.training) ## # Input. if self.in_channels == 0: x = self.const.to(dtype=dtype, memory_format=memory_format) x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1]) else: # misc.assert_shape(x, [None, self.in_channels, self.resolution // 2, self.resolution // 2]) x = x.to(dtype=dtype, memory_format=memory_format) # Main layers. if self.in_channels == 0: x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) elif self.architecture == 'resnet': y = self.skip(x, gain=np.sqrt(0.5)) x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs) x = y + x else: x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) if img is not None: misc.assert_shape(img, [None, self.img_channels, self.resolution // 2, self.resolution // 2]) img = upfirdn2d.upsample2d(img, self.resample_filter) if self.is_last or self.architecture == 'skip': y = self.torgb(x, next(w_iter), fused_modconv=fused_modconv) y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format) img = img + y if img is not None else y assert x.dtype == dtype assert img is None or img.dtype == torch.float32 return x, img def extra_repr(self): return f'resolution={self.resolution:d}, architecture={self.architecture:s}' class SynthesisNetwork(torch.nn.Module): def __init__( self, w_dim, # Intermediate latent (W) dimensionality. img_resolution, # Output image resolution. img_channels, # Number of color channels. channel_base=32768, # Overall multiplier for the number of channels. channel_max=512, # Maximum number of channels in any layer. num_fp16_res=4, # Use FP16 for the N highest resolutions. device='cuda', **block_kwargs, # Arguments for SynthesisBlock. ): assert img_resolution >= 4 and img_resolution & (img_resolution - 1) == 0 super().__init__() self.w_dim = w_dim self.img_resolution = img_resolution self.img_resolution_log2 = int(np.log2(img_resolution)) self.img_channels = img_channels self.num_fp16_res = num_fp16_res self.block_resolutions = [2 ** i for i in range(2, self.img_resolution_log2 + 1)] # [4,8,16,32,64,128] # {4: 512, 8: 512, 16: 512, 32: 512, 64: 512, 128: 256} channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions} self.num_ws = 0 for res in self.block_resolutions: in_channels = channels_dict[res // 2] if res > 4 else 0 out_channels = channels_dict[res] is_last = (res == self.img_resolution) use_fp16 = False block = SynthesisBlock( in_channels, out_channels, w_dim=w_dim, resolution=res, img_channels=img_channels, is_last=is_last, use_fp16=use_fp16, device=device, **block_kwargs) self.num_ws += block.num_conv self.num_ws += block.num_torgb setattr(self, f'b{res}', block) def forward(self, ws, **block_kwargs): block_ws = [] misc.assert_shape(ws, [None, self.num_ws, self.w_dim]) ws = ws.to(torch.float32) w_idx = 0 for res in self.block_resolutions: block = getattr(self, f'b{res}') block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb)) w_idx += (block.num_conv + block.num_torgb) x = img = None for res, cur_ws in zip(self.block_resolutions, block_ws): block = getattr(self, f'b{res}') x, img = block(x, img, cur_ws, **block_kwargs) return img def extra_repr(self): return ' '.join( [ f'w_dim={self.w_dim:d}, num_ws={self.num_ws:d},', f'img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d},', f'num_fp16_res={self.num_fp16_res:d}']) class ImplicitSynthesisNetwork(torch.nn.Module): def __init__( self, w_dim=512, # Intermediate latent (W) dimensionality. input_channel=256, out_channels=3, # Number of color channels. latent_channel=256, n_layers=4, device='cuda' ): super().__init__() self.n_layer = n_layers self.layers = [] self.num_ws = 0 for i_layer in range(self.n_layer): layer = ImplicitSynthesisLayer( w_dim=w_dim, in_channels=input_channel if i_layer == 0 else latent_channel, out_channels=latent_channel, device=device) self.layers.append(layer) self.num_ws += 1 self.layers.append( ImplicitSynthesisLayer( w_dim=w_dim, in_channels=latent_channel, out_channels=out_channels, activation='sigmoid', device=device) ) self.num_ws += 1 self.layers = torch.nn.ModuleList(self.layers) self.w_dim = w_dim self.out_channels = out_channels def forward(self, ws, position, **block_kwargs): out = position for i in range(self.n_layer): out = self.layers[i](ws[:, i], out) out = self.layers[-1](ws[:, self.n_layer], out) return out def extra_repr(self): return ' '.join( [ f'w_dim={self.w_dim:d}']) class TriPlaneTex(torch.nn.Module): def __init__( self, w_dim, # Intermediate latent (W) dimensionality. img_channels, # Number of color channels. tri_plane_resolution=256, device='cuda', mlp_latent_channel=256, n_implicit_layer=3, feat_dim=384, # number of feat dim from encoder n_mapping_layer=8, sym_texture=True, grid_scale=7., min_max=None, perturb_normal=False, **block_kwargs, # Arguments for SynthesisBlock. ): super().__init__() self.n_implicit_layer = n_implicit_layer self.img_feat_dim = 32 # The setting follows Koki's paper self.w_dim = w_dim self.tri_plane_resolution = tri_plane_resolution # the mapping network self.feat_dim = feat_dim self.n_mapping_layer = n_mapping_layer self.embed = FullyConnectedLayer(feat_dim, w_dim, device=device) for idx in range(n_mapping_layer): layer = FullyConnectedLayer(w_dim, w_dim, activation='lrelu', lr_multiplier=0.1, device=device) setattr(self, f'mapping{idx}', layer) # self.w_dim = w_dim * 2 self.tri_plane_synthesis = SynthesisNetwork( w_dim=self.w_dim, img_resolution=self.tri_plane_resolution, img_channels=self.img_feat_dim * 3, device=device, **block_kwargs) self.num_ws_tri_plane = self.tri_plane_synthesis.num_ws mlp_input_channel = self.img_feat_dim + w_dim # mlp_latent_channel = mlp_latent_channel mlp_input_channel -= w_dim self.mlp_synthesis = ImplicitSynthesisNetwork( out_channels=img_channels, n_layers=self.n_implicit_layer, w_dim=self.w_dim, latent_channel=mlp_latent_channel, input_channel=mlp_input_channel, device=device) self.num_ws_all = self.num_ws_tri_plane + self.mlp_synthesis.num_ws # texture related self.sym_texture = sym_texture self.grid_scale = grid_scale self.shape_min = 0. self.shape_lenght = grid_scale / 2. if min_max is not None: self.register_buffer('min_max', min_max) else: self.min_max = None self.perturb_normal = perturb_normal def old_forward( self, feat, position=None, **block_kwargs): ''' Predict texture with given latent code :param feat: image global feat :param position: position for the surface points :param block_kwargs: :return: ''' assert feat.shape[-1] == self.feat_dim # mapping global feature to ws ws = self.embed(feat) for idx in range(self.n_mapping_layer): layer = getattr(self, f'mapping{idx}') ws = layer(ws) ws = ws.unsqueeze(1).repeat(1, self.num_ws_all, 1) plane_feat = self.tri_plane_synthesis(ws[:, :self.num_ws_tri_plane], **block_kwargs) tri_plane = torch.split(plane_feat, self.img_feat_dim, dim=1) normalized_tex_pos = (position - self.shape_min) / self.shape_lenght # in [-1, 1] normalized_tex_pos = torch.clamp(normalized_tex_pos, -1.0, 1.0) if self.sym_texture: x_pos, y_pos, z_pos = normalized_tex_pos.unbind(-1) normalized_tex_pos = torch.stack([x_pos.abs(), y_pos, z_pos], dim=-1) x_feat = grid_sample_gradfix.grid_sample( tri_plane[0], torch.cat( [normalized_tex_pos[:, :, 0:1], normalized_tex_pos[:, :, 1:2]], dim=-1).unsqueeze(dim=1).detach()) y_feat = grid_sample_gradfix.grid_sample( tri_plane[1], torch.cat( [normalized_tex_pos[:, :, 1:2], normalized_tex_pos[:, :, 2:3]], dim=-1).unsqueeze(dim=1).detach()) z_feat = grid_sample_gradfix.grid_sample( tri_plane[2], torch.cat( [normalized_tex_pos[:, :, 0:1], normalized_tex_pos[:, :, 2:3]], dim=-1).unsqueeze(dim=1).detach()) final_feat = (x_feat + y_feat + z_feat) final_feat = final_feat.squeeze(dim=2).permute(0, 2, 1) # 32dimension final_feat_tex = final_feat out = self.mlp_synthesis(ws[:, self.num_ws_tri_plane:], final_feat_tex) return out def sample(self, xyz, feat=None, feat_map=None, mvp=None, w2c=None, deform_xyz=None): # query the deformed points or canonical points # x = deform_xyz x = xyz b, h, w, c = x.shape mvp = mvp.detach() # [b, 4, 4] w2c = w2c.detach() # [b, 4, 4] x = x.reshape(b, -1, c) global_feat = feat # [b, d] out = self.old_forward( feat=global_feat, position=x ) if self.min_max is not None: out = out * (self.min_max[1][None, :] - self.min_max[0][None, :]) + self.min_max[0][None, :] return out.view(b, h, w, -1)