# Copyright (c) OpenMMLab. All rights reserved. import argparse import tempfile from pathlib import Path import torch from mmengine import Config, DictAction from mmengine.logging import MMLogger from mmengine.model import revert_sync_batchnorm from mmengine.registry import init_default_scope from mmseg.models import BaseSegmentor from mmseg.registry import MODELS from mmseg.structures import SegDataSample try: from mmengine.analysis import get_model_complexity_info from mmengine.analysis.print_helper import _format_size except ImportError: raise ImportError('Please upgrade mmengine >= 0.6.0 to use this script.') def parse_args(): parser = argparse.ArgumentParser( description='Get the FLOPs of a segmentor') parser.add_argument('config', help='train config file path') parser.add_argument( '--shape', type=int, nargs='+', default=[2048, 1024], help='input image size') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def inference(args: argparse.Namespace, logger: MMLogger) -> dict: config_name = Path(args.config) if not config_name.exists(): logger.error(f'Config file {config_name} does not exist') cfg: Config = Config.fromfile(config_name) cfg.work_dir = tempfile.TemporaryDirectory().name cfg.log_level = 'WARN' if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) init_default_scope(cfg.get('scope', 'mmseg')) if len(args.shape) == 1: input_shape = (3, args.shape[0], args.shape[0]) elif len(args.shape) == 2: input_shape = (3, ) + tuple(args.shape) else: raise ValueError('invalid input shape') result = {} model: BaseSegmentor = MODELS.build(cfg.model) if hasattr(model, 'auxiliary_head'): model.auxiliary_head = None if torch.cuda.is_available(): model.cuda() model = revert_sync_batchnorm(model) result['ori_shape'] = input_shape[-2:] result['pad_shape'] = input_shape[-2:] data_batch = { 'inputs': [torch.rand(input_shape)], 'data_samples': [SegDataSample(metainfo=result)] } data = model.data_preprocessor(data_batch) model.eval() if cfg.model.decode_head.type in ['MaskFormerHead', 'Mask2FormerHead']: # TODO: Support MaskFormer and Mask2Former raise NotImplementedError('MaskFormer and Mask2Former are not ' 'supported yet.') outputs = get_model_complexity_info( model, input_shape, inputs=data['inputs'], show_table=False, show_arch=False) result['flops'] = _format_size(outputs['flops']) result['params'] = _format_size(outputs['params']) result['compute_type'] = 'direct: randomly generate a picture' return result def main(): args = parse_args() logger = MMLogger.get_instance(name='MMLogger') result = inference(args, logger) split_line = '=' * 30 ori_shape = result['ori_shape'] pad_shape = result['pad_shape'] flops = result['flops'] params = result['params'] compute_type = result['compute_type'] if pad_shape != ori_shape: print(f'{split_line}\nUse size divisor set input shape ' f'from {ori_shape} to {pad_shape}') print(f'{split_line}\nCompute type: {compute_type}\n' f'Input shape: {pad_shape}\nFlops: {flops}\n' f'Params: {params}\n{split_line}') print('!!!Please be cautious if you use the results in papers. ' 'You may need to check if all ops are supported and verify ' 'that the flops computation is correct.') if __name__ == '__main__': main()