# Copyright (c) Open-CD. All rights reserved. import numpy as np import torch from mmcv.transforms import to_tensor from mmcv.transforms.base import BaseTransform from mmengine.structures import PixelData from mmseg.structures import SegDataSample from opencd.registry import TRANSFORMS @TRANSFORMS.register_module() class MultiImgPackSegInputs(BaseTransform): """Pack the inputs data for the semantic segmentation. The ``img_meta`` item is always populated. The contents of the ``img_meta`` dictionary depends on ``meta_keys``. By default this includes: - ``img_path``: filename of the image - ``ori_shape``: original shape of the image as a tuple (h, w, c) - ``img_shape``: shape of the image input to the network as a tuple \ (h, w, c). Note that images may be zero padded on the \ bottom/right if the batch tensor is larger than this shape. - ``pad_shape``: shape of padded images - ``scale_factor``: a float indicating the preprocessing scale - ``flip``: a boolean indicating if image flip transform was used - ``flip_direction``: the flipping direction Args: meta_keys (Sequence[str], optional): Meta keys to be packed from ``SegDataSample`` and collected in ``data[img_metas]``. Default: ``('img_path', 'ori_shape', 'img_shape', 'pad_shape', 'scale_factor', 'flip', 'flip_direction')`` """ def __init__(self, meta_keys=('img_path', 'seg_map_path', 'seg_map_path_from', 'seg_map_path_to', 'ori_shape','img_shape', 'pad_shape', 'scale_factor', 'flip', 'flip_direction')): self.meta_keys = meta_keys def transform(self, results: dict) -> dict: """Method to pack the input data. Args: results (dict): Result dict from the data pipeline. Returns: dict: - 'inputs' (obj:`torch.Tensor`): The forward data of models. - 'data_sample' (obj:`SegDataSample`): The annotation info of the sample. """ packed_results = dict() if 'img' in results: def _transform_img(img): if len(img.shape) < 3: img = np.expand_dims(img, -1) if not img.flags.c_contiguous: img = to_tensor(np.ascontiguousarray(img.transpose(2, 0, 1))) else: img = img.transpose(2, 0, 1) img = to_tensor(img).contiguous() return img imgs = [_transform_img(img) for img in results['img']] imgs = torch.cat(imgs, axis=0) # -> (6, H, W) packed_results['inputs'] = imgs data_sample = SegDataSample() if 'gt_seg_map' in results: gt_sem_seg_data = dict( data=to_tensor(results['gt_seg_map'][None, ...].astype(np.int64))) data_sample.gt_sem_seg = PixelData(**gt_sem_seg_data) if 'gt_edge_map' in results: gt_edge_data = dict( data=to_tensor(results['gt_edge_map'][None, ...].astype(np.int64))) data_sample.set_data(dict(gt_edge_map=PixelData(**gt_edge_data))) if 'gt_seg_map_from' in results: gt_sem_seg_data_from = dict( data=to_tensor(results['gt_seg_map_from'][None, ...].astype(np.int64))) data_sample.set_data(dict(gt_sem_seg_from=PixelData(**gt_sem_seg_data_from))) if 'gt_seg_map_to' in results: gt_sem_seg_data_to = dict( data=to_tensor(results['gt_seg_map_to'][None, ...].astype(np.int64))) data_sample.set_data(dict(gt_sem_seg_to=PixelData(**gt_sem_seg_data_to))) img_meta = {} for key in self.meta_keys: if key in results: img_meta[key] = results[key] data_sample.set_metainfo(img_meta) packed_results['data_samples'] = data_sample return packed_results def __repr__(self) -> str: repr_str = self.__class__.__name__ repr_str += f'(meta_keys={self.meta_keys})' return repr_str