# Copyright (c) OpenMMLab. All rights reserved. """CLIP tokenizer. Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. """ import gzip import html import os from functools import lru_cache from typing import List, Union import ftfy import regex as re import torch os.environ['TOKENIZERS_PARALLELISM'] = 'false' @lru_cache() def default_bpe(): return os.path.join( os.path.dirname(os.path.abspath(__file__)), 'bpe_simple_vocab_16e6.txt.gz') @lru_cache() def bytes_to_unicode(): """Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord('!'), ord('~') + 1)) + list(range( ord('¡'), ord('¬') + 1)) + list(range(ord('®'), ord('ÿ') + 1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer: def __init__(self, bpe_path: str = default_bpe(), special_tokens=None): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = gzip.open(bpe_path).read().decode('utf-8').split('\n') merges = merges[1:49152 - 256 - 2 + 1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v + '' for v in vocab] for merge in merges: vocab.append(''.join(merge)) if not special_tokens: special_tokens = ['', ''] else: special_tokens = ['', '' ] + special_tokens vocab.extend(special_tokens) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {t: t for t in special_tokens} special = '|'.join(special_tokens) self.pat = re.compile( special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) self.vocab_size = len(self.encoder) self.all_special_ids = [self.encoder[t] for t in special_tokens] def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + (token[-1] + '', ) pairs = get_pairs(word) if not pairs: return token + '' while True: bigram = min( pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: # noqa: E722, E261 new_word.extend(word[i:]) break if word[i] == first and i < len(word) - 1 and word[ i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode( 'utf-8', errors='replace').replace('', ' ') return text _tokenizer = SimpleTokenizer() def decode(output_ids: torch.Tensor): output_ids = output_ids.cpu().numpy() return _tokenizer.decode(output_ids) def tokenize(texts: Union[str, List[str]], context_length: int = 77) -> torch.LongTensor: """Returns the tokenized representation of given input string(s) Parameters ---------- texts : Union[str, List[str]] An input string or a list of input strings to tokenize context_length : int The context length to use; all CLIP models use 77 as the context length Returns ------- A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length] """ if isinstance(texts, str): texts = [texts] sot_token = _tokenizer.encoder[''] eot_token = _tokenizer.encoder[''] all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: tokens = tokens[:context_length] # Truncate tokens[-1] = eot_token result[i, :len(tokens)] = torch.tensor(tokens) return result class HFTokenizer: """HuggingFace tokenizer wrapper.""" def __init__(self, tokenizer_name: str): from transformers import AutoTokenizer self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) def save_pretrained(self, dest): self.tokenizer.save_pretrained(dest) def __call__(self, texts: Union[str, List[str]], context_length: int = 77) -> torch.Tensor: # same cleaning as for default tokenizer, except lowercasing # adding lower (for case-sensitive tokenizers) will make it # more robust but less sensitive to nuance if isinstance(texts, str): texts = [texts] texts = [whitespace_clean(basic_clean(text)) for text in texts] input_ids = self.tokenizer( texts, return_tensors='pt', max_length=context_length, padding='max_length', truncation=True, ).input_ids return input_ids