# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp from typing import List import mmengine.fileio as fileio from mmseg.registry import DATASETS from .basesegdataset import BaseSegDataset @DATASETS.register_module() class NYUDataset(BaseSegDataset): """NYU depth estimation dataset. The file structure should be. .. code-block:: none ├── data │ ├── nyu │ │ ├── images │ │ │ ├── train │ │ │ │ ├── scene_xxx.jpg │ │ │ │ ├── ... │ │ │ ├── test │ │ ├── annotations │ │ │ ├── train │ │ │ │ ├── scene_xxx.png │ │ │ │ ├── ... │ │ │ ├── test Args: ann_file (str): Annotation file path. Defaults to ''. metainfo (dict, optional): Meta information for dataset, such as specify classes to load. Defaults to None. data_root (str, optional): The root directory for ``data_prefix`` and ``ann_file``. Defaults to None. data_prefix (dict, optional): Prefix for training data. Defaults to dict(img_path='images', depth_map_path='annotations'). img_suffix (str): Suffix of images. Default: '.jpg' seg_map_suffix (str): Suffix of segmentation maps. Default: '.png' filter_cfg (dict, optional): Config for filter data. Defaults to None. indices (int or Sequence[int], optional): Support using first few data in annotation file to facilitate training/testing on a smaller dataset. Defaults to None which means using all ``data_infos``. serialize_data (bool, optional): Whether to hold memory using serialized objects, when enabled, data loader workers can use shared RAM from master process instead of making a copy. Defaults to True. pipeline (list, optional): Processing pipeline. Defaults to []. test_mode (bool, optional): ``test_mode=True`` means in test phase. Defaults to False. lazy_init (bool, optional): Whether to load annotation during instantiation. In some cases, such as visualization, only the meta information of the dataset is needed, which is not necessary to load annotation file. ``Basedataset`` can skip load annotations to save time by set ``lazy_init=True``. Defaults to False. max_refetch (int, optional): If ``Basedataset.prepare_data`` get a None img. The maximum extra number of cycles to get a valid image. Defaults to 1000. ignore_index (int): The label index to be ignored. Default: 255 reduce_zero_label (bool): Whether to mark label zero as ignored. Default to False. backend_args (dict, Optional): Arguments to instantiate a file backend. See https://mmengine.readthedocs.io/en/latest/api/fileio.htm for details. Defaults to None. Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required. """ METAINFO = dict( classes=('printer_room', 'bathroom', 'living_room', 'study', 'conference_room', 'study_room', 'kitchen', 'home_office', 'bedroom', 'dinette', 'playroom', 'indoor_balcony', 'laundry_room', 'basement', 'excercise_room', 'foyer', 'home_storage', 'cafe', 'furniture_store', 'office_kitchen', 'student_lounge', 'dining_room', 'reception_room', 'computer_lab', 'classroom', 'office', 'bookstore')) def __init__(self, data_prefix=dict( img_path='images', depth_map_path='annotations'), img_suffix='.jpg', depth_map_suffix='.png', **kwargs) -> None: super().__init__( data_prefix=data_prefix, img_suffix=img_suffix, seg_map_suffix=depth_map_suffix, **kwargs) def _get_category_id_from_filename(self, image_fname: str) -> int: """Retrieve the category ID from the given image filename.""" image_fname = osp.basename(image_fname) position = image_fname.find(next(filter(str.isdigit, image_fname)), 0) categoty_name = image_fname[:position - 1] if categoty_name not in self._metainfo['classes']: return -1 else: return self._metainfo['classes'].index(categoty_name) def load_data_list(self) -> List[dict]: """Load annotation from directory or annotation file. Returns: list[dict]: All data info of dataset. """ data_list = [] img_dir = self.data_prefix.get('img_path', None) ann_dir = self.data_prefix.get('depth_map_path', None) _suffix_len = len(self.img_suffix) for img in fileio.list_dir_or_file( dir_path=img_dir, list_dir=False, suffix=self.img_suffix, recursive=True, backend_args=self.backend_args): data_info = dict(img_path=osp.join(img_dir, img)) if ann_dir is not None: depth_map = img[:-_suffix_len] + self.seg_map_suffix data_info['depth_map_path'] = osp.join(ann_dir, depth_map) data_info['seg_fields'] = [] data_info['category_id'] = self._get_category_id_from_filename(img) data_list.append(data_info) data_list = sorted(data_list, key=lambda x: x['img_path']) return data_list